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Abstract

Many different string matchers exist, but not so much exists on how these
string matchers differ from each other. We present a trace-based framework
that reveals these differences through various methods of comparing string
matchers. These methods help us investigate, understand, and build string
matchers.

We introduce three methods of comparing string matchers: (1) iden-
tifying a single string matcher by finding a known string matcher that is
trace-equivalent with the single string matcher; (2) grouping a set of string
matchers into trace-equivalent groups; and (3, our original contribution)
building an evolutionary tree over string matchers. We present our results
from applying these methods on traced versions of known string matchers,
string matchers from published papers, and matchers generated using our
framework by combining string-matching concepts in various ways.

Furthermore, we describe the work leading up to our framework. We
define string-matching algorithms such as Knuth, Morris and Pratt’s. We
describe string-matching concepts and the specializing of string matchers as
introduced by Futamura. We describe the composition of string matchers
by combining string-matching concepts like Queinnec and Geffroy’s string-
matching framework. Finally, we describe how to compare string matchers
by their traces on a set of input, as introduced in Rohde’s string-matching
framework.

Finally, from our experiences with working on string matching, we intro-
duce a new approach to the understanding of string-matching algorithms.
The traditional approach consists of understanding string-matching algo-
rithms one by one. In contrast, our new approach focuses on understanding
string-matching concepts and how to combine these basic concepts to com-
pose string matchers. The new approach uses our methods to understand
the similarities and differences of composed, specialized, and known string
matchers.

ii



Resumé

Vi præsenterer nye metoder til at undersøge, forst̊a og bygge string matchere
med. Disse metoder stammer fra ideen at sammenligne string matchere ved
at betragte deres trace. Vi præsenterer tre metoder: (1) en der identificerer
matchere ved at finde hvilke andre matchere de er trace-equivalent med;
(2) en der fordeler string matchere ind i grupper af hvilke matchere der er
trace-equivalente; og (3, vores originale ide) en der giver et overblik over
string matchere og viser hvordan de er relateret til hinanden ved at bygge
evolutionære træer.

Dette speciale beskriver de ideer og koncepter der har inspireret det: Vi
beskriver string-matching algoritmer med henblik p̊a string-matching kon-
cepter. For eksempel beskriver vi Knuth, Morris og Pratt’s algoritme og dens
brug af positiv og negativ information. Derefter beskriver vi specialisering
af string matchere, dvs. hvordan man kan transformere string matchere, for
eksempel fra en naive til en Knuth-Morris-Pratt matcher. Fra specialisering
kom string-matching frameworks som lader os kombinere string-matching
koncepter og derved opbygge string matchere. String-matching frameworks
giver indblik i hvilken effekt forskellige koncepter har p̊a string matchere
bygget med dem. Vi beskriver hvordan Rohde’s string-matching framework
introducerede en ny metode til at sammenligne string matchere p̊a: at sam-
menligne matchere ved at sammenligne deres traces p̊a en mængde inputs.

Derefter beskriver vi vores trace-based framework. Vores framework
bygger videre fra Rohde’s. Vi beskriver hvordan man, i vores framework,
definere og kombinere string-matching koncepter til at opbygge forskellige
string matchere. Vi beskriver hvordan vi har optaget traces af string matchere
implementeret i C og Scheme. Derefter forklarer vi hvordan vores metoder
til at sammenligne string matcher p̊a virker. Vi beskriver hvordan vi har
implementeret metoderne, hvilke input vi bruger og hvordan man aflæser
metodernes resultater.

Herefter beskriver vi vores resultater fra vores undersøgelse af string
matchere med vores metoder. Vi viser en tabel med grupper af trace-
equivalente string matchere, og beskriver hvad denne tabel fortæller os om
sammenhængen mellem matchere opbygget ud fra koncepter og matchere
der implementerer kendte algoritmer. Vi viser vores evolutionære træer og
beskriver hvordan træerne grupperer string matchere baseret p̊a hvilke kon-
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cepter matcherne er opbygget af. Derefter bruger vi vores metode til at
identificere string matchere med, til at vi verificere at matchere fra littera-
turen implementere de algoritmer de p̊ast̊ar.

Til sidst konkludere vi vores opdagelser og præsenterer perspektiver
omkring vores arbejde med string matchere. Ud fra vores perspektiver
opst̊ar ny fremgangsm̊ade til forst̊aelse af string matchere der bygger p̊a kon-
cepter. Den traditionelle fremgangsm̊ade best̊ar i at forst̊a string-matching
algoritmer en af gangen, hvorimod vores fremgangsm̊ade bygger p̊a forst̊aelse
af koncepter og hvordan man kan kombinere disse til at bygge string matchere.
Denne nye fremgangsm̊ade er gjort mulig igennem vores metoder, da de lader
os forst̊a sammenhænge mellem kombinerede, specialiserede og kendte string
matchere.
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Introduction

Our thesis is that trace-based frameworks make it possible to compare string
matchers, and that this comparison reveals new methods of investigating,
understanding and building string-matching algorithms. We defend this
thesis by introducing a trace-based framework for comparing string matchers
and by describing how we have used it to investigate string matchers. This
dissertation describes the work leading up to our thesis, our trace-based
framework and its results in five chapters.

1. We define topics related to our thesis. We summarize the background
leading up to it and present our contributions supporting it.

2. We then introduce the topics related to our thesis. We describe rel-
evant string-matching algorithms, and the string-matching concepts
used by these algorithms. We describe what specialization of string
matchers is and how this technique has been used to investigate match-
ers. Finally, we describe string-matching frameworks from the litera-
ture and how they have been used to compose string matchers.

3. We then introduce our trace-based framework. We present our imple-
mentation and describe how it composes string matchers by combin-
ing string-matching concepts. We also describe our frameworks three
methods of comparing string matchers: Identifying a single matcher by
comparing its traces on known matchers over a set of inputs; grouping
trace-equivalent string matchers in a table; and building an evolution-
ary tree over string matchers.

4. We then present and examine the results of using our trace-based
framework to investigate string matchers. We have used our frame-
work to build an evolutionary tree over string matchers, which reveals
how the matchers are related to each other. We have also used our
framework string matchers from the literature, both specialized and
fully-defined ones.

5. Finally, we conclude and present perspectives about our work. In this
chapter we present a new approach to understanding string-matching
algorithms.
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The trace-based framework, figures presented and figures referenced in
this dissertation are available online.2

2http://www.danamlund.dk/masters_thesis
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Chapter 1

Background and Motivation

This chapter presents the work leading up to our thesis. We discuss string
matchers: the naive and the sophisticated algorithms known from the liter-
ature. We review the use of partial evaluation to specialize a naive matcher
into a known one. We describe a general method of defining string match-
ers, as well as the difficulty of comparing them. We discuss an automatic
method that uses tracing to observationally distinguish whether two string
matchers are different. Finally, we present the contributions of this thesis.

1.1 String-matching Algorithms

In essence, string-matching algorithms find the first occurrence of a string
(the pattern) in another string (the text). We call an implementation of
a string-matching algorithm a string matcher . The naive string-matching
algorithm checks whether the pattern is a prefix of one of the successive
suffixes of the text. Historically, the first well-known string-matching algo-
rithm is due to Knuth, Morris and Pratt (KMP) [15]. Compared to the naive
string-matching algorithm, the KMP algorithm uses information about ear-
lier comparisons to avoid checking whether the pattern is a prefix of each of
the successive suffixes.

The KMP algorithm compares characters from left to right as opposed to
the Boyer and Moore’s algorithm (BM ) [5] which compares characters from
right to left. Another difference between the KMP and the BM algorithms
is their complexity: the average runtime for KMP is linear whereas for BM
it is sub-linear.

String-matching algorithms can be compared using different methods
such as looking at concepts used (left-to-right vs. right-to-left), complexity
(average running time) and, for the purpose of this thesis, the traces of
string matchers implementing the two string-matching algorithms:

Definition 1 (Trace [1, Definition 5]) The trace of a string matcher is
the sequence of comparisons performed when searching for a given pattern
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in a given text. Tracing a string matcher means adding the ability to record
traces of that matcher.

Definition 2 (Trace equivalence [1, Theorem 1]) String matchers are
trace equivalent when they have the same trace for all input.

Trace equivalence is a theoretical definition, but we compare traces in a
practical setting. This means we can never fully show two matchers to be
trace equivalent since we only compare traces over a finite set of inputs. We
can, however, show two matchers to not be trace equivalent by finding one
input resulting in different traces for two matchers.1

In order to compare string matchers by their traces we assume that two
matchers are likely trace equivalent when they have the same traces over
a large set of inputs. Our results show that this assumption is valid by
presenting meaningful comparisons of string matchers.

1.2 Specialization of String Matchers

In essence, specialization is the process of processing and hopefully optimiz-
ing a program with respect to a part of its input. Running the specialized
program on the rest of the input yields the same result as running the orig-
inal program on the complete input. Specializing a string matcher with
respect to a given pattern produces a specialized matcher taking only a text
as input, and searching for the given pattern in any given text.

A canonical measure of specialization techniques is the KMP test . The
test originally determined whether a technique could specialize a naive string
matcher into a KMP matcher. But the KMP test has also been used to
show the general case of specializing any quadratic-time naive matcher into
a KMP-like matcher running in linear time. The KMP test was introduced
by Futamura to show the power of generalized partial evaluation [11].

The KMP test has inspired further work on specialization of string
matchers. Some have passed it by using the simpler polyvariant partial eval-
uation method to specialize a binding-time separated naive string matcher
into a KMP matcher, as shown by Consel and Danvy [7]. Others have
passed it using the new specialization method called positive supercompi-
lation, which can specialize a naive string matcher into a MP matcher, as
shown by Sørensen, Glück and Jones [24].

1.3 Abstraction of String Matchers

Following the work on specializing string matchers to ones implementing
KMP, BM and others, Queinnec [18], Amtoft et al. [3, 4] and Rohde [21] have

1“Program testing can be used very efficiently to show the presence of bugs, but never
to show their absence” - Dijkstra [10]
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each designed string-matching frameworks for generating different string
matchers. These matchers are generated by instantiating concepts such as
traversal order, what text comparisons to cache, etc. The generated string
matchers are then specialized into linear-time matchers, some of which im-
plement independently known algorithms from the literature. These frame-
works give insight into which concepts define known algorithms and which
define new string-matching algorithms.

1.4 Correctness

The difficulty with the string-matching frameworks is to compare the spe-
cialized matchers with known string matchers. This comparison is difficult
because the source code of the specialized matchers is different from the
known matchers as a result of the specialization process. One such compar-
ison between a KMP and a specialized naive string matcher was shown to
be equivalent by Ager, Danvy and Rohde [1] using a formal proof. But this
proof is complex and not a practical method of checking equality between
large numbers of string matchers.

1.5 Propagation of Information

Rohde introduced a method of automatically comparing string matchers [21].
The method compares the traces of string matchers by applying the matchers
to a set of inputs. It is inspired by the formal proof of Ager et al., and
it automates the negative of that proof. The method is counter-example
driven: if the traces disagree on any of the inputs, the matchers are not
trace-equivalent. Since this method is automated, it solves the problem of
comparing large numbers of string matchers.

Rohde described his trace-based framework and presented results from
experimenting with his implementation. He, however, did not release it as
an easy-to-use utility.

1.6 Contribution

In this thesis we complete Rohde’s work. We present an implementation of
a trace-based framework for comparing string matchers by using traces and
for specifying string-matching strategies. A string-matching strategy is a set
of concepts that together define a string matcher.

We have implemented our framework in Scheme, closely following Ro-
hde’s description of his framework. Our implementation splits and renames
concepts and functions to make specifying string-matching strategies more
explicit.
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We have access to a large database of string matchers from Charras and
Lecroq’s Handbook of Exact String Matching Algorithms [6]. This handbook
of string matchers has led us to a second contribution: three new methods
of comparing string matchers.

1.6.1 Identifying a single string matcher

Our first method identifies a single string matcher. This method identifies
which algorithm a given string matcher implements. The method takes
a single matcher and compares it against a set of other matchers using a
set of inputs. This method tells us on what inputs the given matcher is
different from the other matchers, and which other matchers are equivalent
with the given matcher. We use this method to verify that matchers from
the literature implement the string-matching algorithms they claim.

1.6.2 Generating a table separating string matchers

Our second method generates a table separating string matchers. The table
tell us which matchers are equivalent and can be used to identify a matcher
by looking up the matchers traces in the table. The table consist of groups
of trace-equivalent matchers, and which patterns, texts and corresponding
traces separate each group from the other matchers in the table. To generate
a table separating string matchers, we apply a given set of matchers with a
large set of inputs. We then find the matchers that are trace-equivalent on
all inputs, and a small set of inputs and corresponding traces that separate
groups of trace-equivalent matchers from each other.

1.6.3 Building an evolutionary tree over string matchers

Our third method builds an evolutionary tree over string matchers. The
tree shows how string matchers are related to each other. It presents an
overview over string matchers grouped according to which string-matching
concepts compose them. Furthermore, the tree gives insights into a matchers
behavior without requiring a second matcher that is trace equivalent with the
first. We determine how similar two string matchers are by using different
trace comparison methods. We generate evolutionary trees by counting the
number of shared traces between all pairs of matchers for a large set of
inputs. We then apply the tool QuickTree (made by Howe, Bateman and
Durdin [13]) to generate our tree using the neighbor joining method, which
was introduced by Saitou and Nei [22].
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Chapter 2

Related Work

This chapter presents the previous work that has inspired this thesis.
It consists of three parts: the first part contains descriptions of string-

matching algorithms and the often-used concepts these algorithms use; the
second part presents previous string-matching frameworks; and the last part
provide an explanation of partial evaluation and how to specialize a naive
O(n2) string-matching algorithm into a linear one for a static pattern.

2.1 String-matching Algorithms

This section describes the concepts of our string-matching strategies. We
introduce positive and negative information as well as which traversal order
is used to compare the pattern against text suffixes. Along with each string-
matching concept, we introduce a corresponding string-matching algorithm.

k: 01234567890

t: abbabacabaa, tl=10

p: abaa, pl=4

i: 0123

output: 7

This figure shows a string-matching problem with the pattern p=abaa and
the text t=abbabacabaa. The output is where in t the first occurrence of p
fits. Since t[k] = p[i] for k = 7, 8, 9, 10 and i = 0, 1, 2, 3 respectively, the
output is 7. For patterns that do not occur in the text, the output is -1.

Figure 2.1: Notation of string-matching figures

2.1.1 Naive algorithm

The naive algorithm compares characters from left to right . On mismatches
the pattern is moved one character to the right and comparison starts again
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by comparing the first character of the pattern with the second character
of the text. Moving the pattern in this fashion is called the sliding window
technique. Moving the pattern one character to the right is also called
shifting the sliding window by one.

k: 01234567890

t: abbabacabaa

?: ==!

p: abaa

?: !

p: abaa

?: !

p: abaa

?: ===!

p: abaa

...

?: ====

p: abaa

This figure shows how the naive algorithm checks whether abaa occurs in
abbabacabaa

Figure 2.2: Naive algorithm example

2.1.2 Positive information

Positive information is knowledge about something that we know is true.
For example, for the code “if x = 1 then C1 else C2”, when we are in C1 we
know that x denotes 1, This knowledge is a positive piece of information.
Positive information is used by the Morris-Pratt string-matching algorithm.

In Figure 2.3, the first mismatch is p[2] 6= t[2]. At this point, we know
that p[0] = t[0] = a and p[1] = t[1] = b. In the naive matcher, we would

proceed to check p[0]
?
= t[1], but the positive information tells us that

p[0] = a and b = t[1]. Since a 6= b, we can shift the pattern two characters
instead of one.

2.1.3 Negative information

Negative information is knowledge about something that we know is false.
For example, for the code “if x = 1 then C1 else C2”, when we are in C2

we know that x does not denote 1. This knowledge is a negative piece of
information. Negative information is used by the KMP algorithm. KMP
use positive information and one entry of negative information (i.e., one
mismatch of the form p[i] 6= t[k]).

Figure 2.4 shows comparisons being made by the KMP algorithm.
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i: 0 1 2 3

p: a b a a

n: -1 0 0 1

k: 01234567890

t: abbabacabaa

p1: abaa

?1: ==!

p2: abaa

?2: !

p3: abaa

?3: ===!

p4: abaa

?4: !

p5: abaa

?5: !

p6: abaa

?6: ====

This figure shows the comparisons made by the Morris-Pratt algorithm when
searching for the pattern abaa in the text abbabacabaa. The next table is
defined in row n. This table tells us how much we can shift after a mis-
match on a given pattern index. The next table is generated using positive
information.

Figure 2.3: Morris-Pratt algorithm example

That we only use one entry of negative information is demonstrated in
Steps 2 and 4 of the figure. After Step 2 we know that a = p[3] 6= t[6] = c

but in Step 4 we still compare a = p[0]
?
= t[6] = c. This comparison is

needed because our one entry of negative information was overwritten in
Step 3 by b = p[1] 6= t[6] = c.

2.1.4 Bad character shift heuristic

The bad character shift heuristic uses characters in the text to determine
where it is possible to align the pattern with the text. For a given character
in the text, we can shift the pattern until the text character is opposite
the same character in the pattern. To illustrate this concept, let us look at
Sunday’s Quick Search string-matching algorithm [25].

Figure 2.5 shows how the Quick Search algorithm searches for the pattern
abaa in the text abbabacabaa.
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i: 0 1 2 3

p: a b a a

f: -1 0 -1 1

k: 01234567890

t: abbabacabaa

p1: abaa

?1: ==!

p2: abaa

?2: ===!

p3: abaa

?3: !

p4: abaa

?4: !

p5: abaa

?5: ====

Comparisons made by the KMP algorithm when finding the pattern abaa

in the text abbabacabaa. This algorithm uses positive information and one
entry of negative information (i.e., one mismatch of the form p[i] 6= t[k]).
f is the failure table that serves the same purpose as the next table from
Morris-Pratt. The failure table uses one entry of negative information to
improve the next table. After Step 1, we have the negative information

a = p[2] 6= t[2] = b. We can skip the next step which would check p[0]
?
= t[2]

since we already know that a = p[0] 6= t[2] = b. The skipped step is the
lines p2 and ?2 in Figure 2.3.

Figure 2.4: Knuth-Morris-Pratt algorithm example

2.1.5 Traversal order

Traversal order refers to the order in which the characters of the pattern
is compared to a text suffix. To illustrate this concept, let us present the
Boyer-Moore algorithm. This algorithm uses positive information, one entry
of negative information, the bad character shift heuristics, and it compares
the pattern to a text suffix from right to left.

Figure 2.6 shows how the Boyer-Moore algorithm looks for the pattern
abaa in the text abbabacabaa. The number of shifts is the maximum of
either using the failure-table or the bad character shift heuristics table. In
Step 1, the failure table has the maximum value. In Step 3, however, the bcs
has the maximum value because the character c is not part of the pattern.
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a b "all other characters"

bcs: 1 3 5

k: 01234567890

t: abbabacabaa

p1: abaa

?1: ==! bcs[t[4] = b] = 3

p2: abaa

?2: ===! bcs[t[7] = a] = 1

p3: abaa

?3: ! bcs[t[8] = b] = 3

p5: abaa

?5: ====

Comparisons made by the Quick Search algorithm when finding the pattern
abaa in the text abbabacabaa. This algorithm uses the bad character shift
heuristic in the from of the table bcs. In Step 1, we determine that the
current pattern alignment does not match and we decide how much to shift
the pattern. If we shift by 1, the last character of the pattern p[3] will be
matched with t[4] but t[4] = b 6= a = p[3]. Shifting by 2 would result in
t[4] = b 6= a = p[2], but shifting by 3 gives us the comparison t[4] = b =
b = p[1]. If the character in t[4] had not been in the pattern, we would
know all comparisons between the pattern and t[4] would be mismatches,
and we could skip to text index 4 by shifting 5 times.

Figure 2.5: Quick search algorithm example

2.1.6 Summary and conclusions

This section has defined string-matching algorithms and string-matching
concepts.

We presented the following string-matching algorithms: naive, Morris-
Pratt, Knuth-Morris-Pratt, quick search and Boyer-Moore. Together with
these algorithms we introduced the string-matching concepts: positive infor-
mation, negative information, the bad character heuristics table, and traver-
sal order.

In the following section we introduce a different method of looking at
string-matching algorithms: specialization. Specialization can transform a
naive matcher into a new matcher implementing a different algorithm by
keeping track of string-matching concepts.
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a b "all other characters"

bcs: 1 2 4

i: 0 1 2 3

p: a b a a

gs: 6 5 2 2

k: 01234567890

t: abbabacabaa

p1: abaa

?1: != max(gs[2], bcs[b]+(pl-1-i)) = max(2, 1) = 2

p2: abaa

?2: ! max(gs[3], bcs[b]+(pl-1-i)) = max(2, 2) = 2

p3: abaa

?3: ! max(gs[3], bcs[c]+(pl-1-i)) = max(2, 4) = 4

p4: abaa

?4: ====

Comparisons made by the Boyer-Moore algorithm when finding the pattern
abaa in the text abbabacabaa. This algorithm uses the bad character shift
heuristic. bcs is the bad character shift heuristics table and gs is the good-
suffix table (which plays the same role as the failure table do in Knuth-
Morris-Pratt). The equations in the right column show the failure table
(called good-suffix) and the bad character shift heuristics table. (pl-1-i)

is the length to the last index in pattern.

Figure 2.6: Boyer-Moore algorithm example

2.2 Specialization of String Matchers

In this section we describe specialization. We describe the general definition
and how specialization can be applied to string matchers. We then describe
how the KMP test is passed by two specialization techniques: polyvariant
partial evaluation and positive supercompilation.

2.2.1 Specializing programs

We specialize a given program representation (pt1 × t2 → t3q) with respect
to an input (of type t1) into a new program representation (pt2 → t3q).
Applying the new program with a single input (of type t2) is equivalent to
applying the original program with the two inputs of types t1 and t2.

Specialization: ppt1 × t2 → t3q× t1 → pt2 → t3qq
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2.2.2 Specializing string matchers

A string matcher takes as input a pattern and a text and gives as output an
index of where the first occurrence of the pattern occurs in the text. M is
the representation of a string matcher:

M : ppattern × text → Zq

Applying a specializer S to SM with respect to a pattern likewise gives
us a new program representation. This new program only takes a text as
input and outputs an integer of the first point in the text we see the pattern
we specialized SM with:

run S 〈M , 〈pattern, 〉〉 : ptext → Zq

For appropriate S and M , the specialized string matcher can be improved
to run in linear time.

2.2.3 The KMP test

The KMP test is a canonical test for specialization techniques. It checks
whether a quadratic runtime string matcher can be specialized with respect
to its pattern into a linear runtime matcher. The KMP test was proposed
by Futamura to show the power of generalized partial evaluation [11], and
it was named by Sørensen et al. [24].

The KMP test has inspired examination into the generality of string
matchers. This examination involves finding what it takes to specialize the
naive string matcher into matchers known from the literature.

2.2.4 Specialization with polyvariant partial evaluation

Specializing a naive string matcher into a KMP matcher using polyvariant
partial evaluation, which is simpler than generalized partial evaluation, was
first achieved by Consel and Danvy [7]. The simpler specialization requires
a binding-time separated naive string matcher . A binding-time separated
naive string matcher is a naive string matcher that has been non-trivially
modified in order to help the specialization technique. These modifications
separate usage of the pattern (which is static), from usage of the text (which
is dynamic). The idea for the modifications came from realizing that after
a mismatch, the pattern is matched against a shifted version of itself up
until the mismatch, as illustrated in Figure 2.7. This insight resulted in
a binding-time separated naive string matcher that was specialized into a
matcher having the same concepts as a KMP matcher. Since the specialized
matcher had the same running time as KMP, the same order of comparing
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First round:

Text +----|-------------+

| Mismatch

Pattern +----|---+

Second round original:

Text +----|-------------+

Pattern’ +----|---+

Second round improved:

Text |-------------+

Pattern +----|

Pattern’ +----|---+

The first round of comparisons shows the pattern being matched against
the text and a mismatch of 6th characters. After the mismatch the original
naive string matcher compare the shifted pattern (Pattern’) against the
text. But it is possible to compare the shifted pattern against the original
pattern up until the mismatch, and then start comparing against the text.
This figure is copied from the paper on specializing into a naive matcher
into a KMP one by Consel and Danvy [7].

Figure 2.7: KMP specialization insight

characters, and the same failure table expressed in algorithmic form (for one
pattern), it probably implemented KMP.1

Furthermore, specializing a binding-time separated naive string matcher
into a Boyer-Moore one using the polyvariant partial evaluation technique
was later achieved by Danvy and Rohde [9]. The naive matcher is modified to
contain the two concepts of BM: the good-suffix table and the bad character
shift heuristic. The good-suffix table is similar to the KMP’s failure table,
but working from right to left. A naive matcher modified to use the good-
suffix table was found by Ager, Danvy and Rohde [2]. The bad character
shift heuristic concept was implemented using a function consisting of a case-
statement over each distinct character in the input. Combining these two
modifications resulted in a binding-time separated naive string matcher that
specializes into a matcher that have the same properties as a BM matcher.
Since the specialized program was a string matcher, used the same order for
comparing characters and has the same running time as BM, it probably
implemented BM.

Checking equivalence between a specialized and a known string matcher
is difficult. The previously mentioned results compared matchers by the

1“If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is
a duck.”

14



duck test mentioned in Footnote 1. But to truly show equivalence, we need
a formal proof that two string matchers perform the same text and pattern
comparisons on all inputs. A formal proof that a specialized naive string
matcher is equivalent with Knuth-Morris-Pratt has been presented by Ager,
Danvy and Rohde [1]. The proof consists of formalizing the languages used
by the specialized and the Knuth-Morris-Pratt algorithm, defining a com-
parison semantic, and showing that the two matchers perform the same
comparisons. The proof, however, not an easy method of showing equiva-
lence between the large number of specialized and known string matchers.

2.2.5 Specialization with positive supercompilation

Positive supercompilation is a transformation method that is more powerful
than polyvariant partial evaluation but simpler than Futamura’s generalized
partial evaluation technique. It was introduced by Sørensen, Glück and
Jones [24].

The positive supercompiler transforms programs written in a minimal
first-order functional language. The transformation follows two phases:
Positive driving and folding. Positive driving unfolds function calls for all
encountered values of each of the arguments. Positive driving only saves
positive information because arguments are only defined as being equal to
values. Negative driving would save negative information, which would mean
defining arguments as being not equal to some values. The folding phase
combines identical functions generated in the driving phase. Without the
folding phase, the driving algorithm would hardly ever terminate.

Using positive supercompilation, an unmodified naive string matcher can
be specialized into a KMP-like string matcher. Figure 2.8 shows a matcher
that has been specialized with respect to the pattern AAB. We can see that
Lines 21-22 are redundant. We have this redundancy because negative infor-
mation is not accounted for in positive supercompilation. The paper proves
that specialized string matchers always run in linear time, meaning that pos-
itive supercompilation passes the KMP test. However, KMP uses one entry
of negative information and since supercompilation does not take negative
information into account, the specialized matcher cannot be KMP. Later in
this thesis, in Section 4.4.4, we show that the matcher in Figure 2.8 likely
implements the Morris-Pratt algorithm, and if we remove the redundant
lines, the specialized matcher likely implements the KMP algorithm.

The paper presenting positive supercompilation does not focus on verify-
ing that the specialized string matchers exactly implement a specific KMP-
like algorithm. But the authors are well aware that there are differences
between algorithms since the specialized matcher in this thesis’ Figure 2.8
is identified as “Almost KMP specialized matcher” in the paper and an-
other figure without the redundancy lines is identified as “KMP specialized
matcher”.
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1 loop_AAB ss = case ss of

2 [] -> False

3 (s’ : ss’) -> if A = s’

4 then loop_AB ss’

5 else loop_AAB ss’

6

7 loop_AB ss = case ss of

8 [] -> False

9 (s’ : ss’) -> if A = s’

10 then loop_B ss’

11 else if A = s’

12 then loop_AB ss’

13 else loop_AAB ss’

14

15 loop_B ss = case ss of

16 [] -> False

17 (s’ : ss’) -> if B = s’

18 then True

19 else if A = s’

20 then loop_B ss’

21 else if A = s’

22 then loop_B ss’

23 else loop_AAB ss’

This code is Figure 11 from the paper on positive supercompilation [24,
p. 826].

Figure 2.8: Naive string matcher specialized by a positive supercompiler

2.2.6 Summary and conclusions

Several different specialization techniques, all simpler than Futamura’s, have
been used to pass the KMP test. Consel and Danvy’s specialized matcher
exactly implements the KMP algorithm, but it starts from a binding-time
separated naive string matcher. Sørensen et al.’s specialization starts from
a completely naive string matcher, but the specialized matcher implements
the simpler MP algorithm, a distinction that can easily be found using our
framework.

In the following section we introduce frameworks that can combine string-
matching concepts to compose different binding-time separated string match-
ers.

2.3 String-matching Frameworks

String-matching frameworks generate quadratic-time string matchers using
different concepts such as traversal orders from left to right or from right to
left. The generated matchers of some of these frameworks are designed in
a way that makes specializing them result in linear runtime string match-
ers from the literature such as the Knuth-Morris-Pratt or the Boyer-Moore
matchers.

In this section we describe the mechanisms and contributions of 3 string-

16



matching frameworks. We present the frameworks in the chronological order
of their publication: firstly the framework by Queinnec and Geffroy [18],
secondly the framework by Amtoft, Consel, Danvy and Malmkjær [4] and
lastly the framework by Rohde [21].

2.3.1 Queinnec and Geffroy

Queinnec and Geffroy’s string-matching framework defines a language that
uses, and searches, in S-expressions. We explain the language, how pattern
matching is used as a cache and then how the framework creates KMP-
like and BM-like string matchers. The main contribution is designing a
framework that caches and reuse positive and negative information already
checked.

The language searches through S-expressions. How to search and what to
search for, is determined by a program defined in the language of the frame-
work. S-expressions define tree-structures, but, for this thesis, we focus on
strings. To apply terminology from string matchers, the text is here defined
as a flat list of symbols ((cons ’B (cons ’A (cons ’B (cons ’A (cons

’R ’())))))). The pattern and the string matcher have been combined in
a program defined in the language of the framework. This language, when
limited to strings, is essentially a regular-expression matcher. Figure 2.9
explains a program defined in the framework.

(tree skip (cons (any) (hole skip))

(cons ’B

(cons ’A

(cons ’B

(cons ’A

(cons ’R (any)))))))

A program defined in the language from Queinnec’s framework. The pro-
gram searches for the string BABAR from left to right. The command (tree

v a b) either searches according to b or it searches according to a where
(hole v) in a matches (tree v a b). The command (tree v a b) plays
the same role as the Kleene star does in regular expressions. This program
is the same as the regular expression “.*BABAR.*”.

Figure 2.9: Queinnec and Geffroy’s framework example

The framework fills a cache with positive and negative information. The
cache is represented by a language similar to the language defining the string
matchers. If a text character is determined to be A, this is represented
by ’A. If a text character is determined to not be A, it is represented by
(not ’A). Some other commands are: (and) to combine representations,
(any) to signify no information about a text character and (cons) to build
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lists that show which positive and negative information is related to which
text character. On a mismatch the cache is used to determine which text
characters can be safely skipped in the next round of comparisons.

The framework is used to build a KMP-like and a BM-like string matcher.
The KMP-like matcher generated is shown in Figure 2.9. The specialized
string matcher is a set of mutually recursive functions. To generate the BM-
like string matcher with an traversal order of right-to-left they introduce the
(xcons) command. (xcons v w) is the same as (cons w v), this means
the right argument (w) is evaluated before the left (v). The generated string
matchers have been shown to not be the KMP and the BM algorithms by
Rohde [21, p. 30].

2.3.2 Amtoft et al.

Amtoft et al.’s string-matching framework uses a binding-time separated
naive matcher modified to use a cache. Changing properties of the naive
string matcher results in different string matchers. The framework is used to
generate a KMP-like and a BM-like string matcher. The main contribution
is showing that one string matcher can be specialized to the KMP and BM
matchers by changing the order in which the pattern is compared to the text
with.

String matchers are instantiated by changing properties of binding-time
separated native string matcher. The properties that can be changed are
traversal order and what positive and negative information to remove from
the cache (called “pruning”). The ability to prune information from the
cache is original to Amtoft’s PhD thesis [3].

The cache is a list of either: a single character or another list of charac-
ters. A single character means a text character is known and is that single
character — a positive information. A list of characters means a text char-
acter is known to not be any of the characters in that list — a negative
information.

The framework generates several KMP-like and BM-like string matchers.
The framework can generate a Morris-Pratt matcher by only saving positive
information and it can generate a KMP-like matcher by saving both positive
and negative information and pruning negative information. The generated
matcher is not fully the KMP algorithm as it prunes the cache on matches
but not on mismatches [21, p. 28]. The framework can generate several
BM-like matchers. But the several generated BM-like string matchers are
not trace-equivalent with matchers known to implement their corresponding
BM-like algorithms. The generated matchers do not implement the BM-like
because the framework does not implement table lookup to model the bad
character shift heuristic table [9].
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2.3.3 Rohde

Rohde’s string-matching framework builds on Amtoft et al.’s framework.
The string matcher in Rohde’s has been expanded with more control over
pruning and a table lookup mechanic was added. Table lookup emulates
the bad character shift heuristic table. Furthermore, different instantiations
of the expanded matcher can be combined to simulate using more than one
cache. The main contribution is introducing traces of string matchers.

Generated string matchers caches information about the text after each
comparison using two methods: char and table. The char method, which
was used in Amtoft et al.’s string-matching framework, caches positive in-
formation for matches and negative information for mismatches. The table
method caches positive information on both matches and mismatches.

Another improvement in this framework over that of Amtoft et al. is the
ability to combine different string-matching strategies. This concept is used
to define, among others, the Horspool algorithm [12]. The Horspool algo-
rithm first compares the last character of the pattern and on a mismatches
does a bad character shift heuristic table lookup. But on a match the al-
gorithm compares the pattern with the text like the naive algorithm. The
Horspool algorithm can be seen as a combination of a naive strategy that
checks the last pattern character first and a strategy that only checks the
last character using the table comparison method. These strategies are com-
bined using the Backtracking matcher as demonstrated and explained in
Figure 2.10.

Backtracking

— Basic(last-left-to-right , char ,+none, -none)

— Basic(last-only , table,+all , -all)

This figure show the Horspool algorithm defined using Rohde’s framework.
The first Basic function defines a string matcher comparing the last char-
acter of the pattern first, followed by the rest from left to right, as well as
not adding any information to a cache. The second Basic defines a matcher
that only compares the last character of the pattern and it builds a bad
character shift heuristic table. The Backtracking matcher matches using
its first argument up until a mismatch is found. On a mismatch, the num-
ber of shifts is determined as the maximum of both the matchers given as
arguments.

Figure 2.10: Rohde’s framework example

Rohde has used his string-matching framework to generate several known
string-matching algorithms. The main difference between this framework
and the others is the ability to compare the traces of the matchers. Applying
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this method of comparison to the previous frameworks and other work have
shown that some string matchers are not equivalent to their corresponding
known algorithms.

2.3.4 Summary and conclusions

This section has presented the string-matching frameworks: Queinnec and
Geffroy’s, Amtoft et al.’s and Rohde’s.

These frameworks have examined which string-matching algorithms we
get when composing matchers using different string-matching concepts. Un-
derstanding which string-matching algorithm a composed string matcher
implements, was greatly improved by Rohde’s framework and its method of
comparing string matchers by their traces.

2.4 Summary and conclusions

This chapter has described the background leading up to our thesis. We
described string-matching algorithms and concepts. We described special-
ization and presented several examples of how it has been used to show how
concepts and matchers are related. Lastly, we described string-matching
frameworks, how they have been used to show connections between con-
cepts and matchers, and how Rohde’s framework introduced the method of
comparing matchers by their traces.

In the following chapter we describe our own framework. Our framework
builds on Rohde’s, with more explicit naming when generating composed
string matchers and more methods of comparing string matchers.
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Chapter 3

Framework

This chapter describes our trace-based framework, and how we use it to
generate and to compare string matchers.

Generation of string matchers is similar to that of Rohde’s framework [21].
Compared to Rohde’s framework, ours has a different cache and divides the
basic string matcher up into several matchers. The framework is imple-
mented in the Scheme programming language[14].

Comparing string matchers involve comparing the traces of matchers on
a set of inputs. The string matchers are those generated from the framework
and also matchers implemented in other languages. The set of inputs are
patterns and texts of string permutations over a given alphabet and up to
a given length. The result is a small number of inputs that differentiates as
many of the string matchers as possible with the given set of inputs.

3.1 Composing String Matchers

This section describes how our framework was implemented. We give an
overview over data structures and how the functions fit together to generate
various string matchers.

3.1.1 String matcher

We look at the type of string matchers that check if the given pattern is a
prefix of successive text suffixes. If the pattern is a prefix of the suffix the
algorithm stop, but if the pattern is not a prefix of the suffix, the algorithm
continue checking against a new text suffix. Checking whether the pattern
is a prefix of a given suffix is called the matching phase.

Our framework generates string matchers by building match functions.
A match function check one matching phase and returns. A match function
takes as input a pattern, a text, an index of a text suffix, and a cache. As
output, a match function returns whether a match was found, the number
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of times we can shift the pattern safely, a cache, a trace, and the pattern
index that caused the mismatch:

match (types) :Σ∗ × Σ∗ × N× cache → B× N× cache × N list × Z
match (contexts) :pattern× text× text-suffix× cache →

found-match× shifts× cache × trace×mismatch-index

3.1.2 Cache

Our cache holds positive and negative information about text characters.
Text characters are referenced by their index, starting from 0. Positive
information is represented by a single character from the alphabet Σ and
negative information is a list of characters from the alphabet. A map from
text indices to either a single character or a list of characters is called a flat
cache:

flat-cache (types): N 7→ (Σ + Σ list)

flat-cache (contexts): text-index 7→ (is-character + is-not-characters)

We also need to know from which matching phase each piece of informa-
tion was gathered. We cache which information came from which matching
phase by using a list of flat caches in reverse chronological order, meaning
the information from the latest matching is the first flat cache in the list.
This gives us our full cache:

cache (types): (N 7→ (Σ + Σ list)) list

In contrast, Rohde’s framework defines a cache as a list of entries of
positive or negative information where the indices of the entries determine
which text character the information relates to.

The Scheme code defining the functions used to access the cache is avail-
able in Figure 3.1.

3.1.3 Basic matchers

The basic matchers take inputs that defines a string-matching strategy
and generates a match function. The basic matchers determine four con-
cepts: traversal order, how much positive and negative information to cache,
whether to emulate a bad character shift heuristic table or not, and whether
the cache is used during matching.
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1 (define pos? char?)

2

3 (define (neg? e)

4 (or (null? e) (pair? e)))

5

6 (define (cache-hit? cache j pat-char)

7 "Whether the given cache has information about a text index j and a

8 character pat-char."

9 (let ((e (cache-ref cache j)))

10 (or (pos? e)

11 (and (neg? e) (member pat-char e)))))

12

13 (define (cache-mismatch? cache j pat-char)

14 "Whether the cache can tell us if the text index j is different

15 from the character pat-char."

16 (let ((e (cache-ref cache j)))

17 (if (pos? e)

18 (not (equal? e pat-char))

19 (member pat-char e))))

The list of functions used to access the cache. The missing function
cache-ref searches the cache for the best information about a given text in-
dex. The best information is an entry of positive information, the next-best
would be a list of negative information from all previous matching phases.

Figure 3.1: Our frameworks cache implementation

Traversal order

A function determines the traversal order the indices of the pattern is being
checked in. We call this function an orderer . It takes as input the length of
the pattern and returns a list of pattern indices:

orderer (types): N→ N list

orderer (contexts): pattern-length → pattern-indices

A table of the traversal orders being defined in our framework is displayed
in Figure 3.2.

Traversal orders are defined as functions instead of just lists, but are
otherwise the same as in Rohde’s framework. The traversal orders table is
essentially the same as in the paper on Rohde’s framework [21].

The Scheme code defining the orderer functions is displayed in Figure 3.1.

How much positive and negative information to cache

A function determines much positive and negative information to cache.
We call this function a pruner . It takes as input a cache and returns a
potentially changed cache:
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Traversal order List of pattern indices

left-to-right(m) 0, 1, · · · ,m− 1
right-to-left(m) m− 1,m, · · · , 0
last-left-to-right(m) m− 1, 0, 1, · · · ,m− 2
last-only(m) m− 1
second-only(m) 1
left-to-right-skip-second(m) 0, 2, 3, · · ·m− 1
third-to-right-first(m) 2, 3, · · ·m− 1, 0
last-first-middle-rest(m) m− 1, 0, m2 , 1, 2, · · · ,

m
2 − 1, m2 + 1, · · · ,m− 2

m is the length of the pattern.

Figure 3.2: The traversal orders functions in our trace-based frameworks

pruner (types): cache → cache

pruner (contexts): input-cache → pruned-cache

The cache can be pruned by either removing information of a certain
type, or it can be pruned by removing information of a certain age. The age
of information is how many matching phases ago a bit of information was
cached. The types of information in the cache is either positive or negative.
A table of the pruner functions being used in this thesis is displayed in
Figure 3.4.

In contrast, pruning the cache in Rohde’s framework is defined using
two functions: one determining what information to gather and another
determining what information to prune. To prune all information older than
1, we define the two functions to gather and prune the same information.

The Scheme code defining the cache pruning functions is displayed in
Figure 3.5.

Emulating a bad character shift heuristic table

Whether to simulate a bad character shift heuristic table is determined by
which basic matcher we use. The matcher Table emulates a table, but
Basic does not. The matchers take as input an orderer function and a
pruner function and return a match function.

Basic,Table : orderer × pruner → match

Emulating the bad character shift heuristic table is done by always saving
positive information. So in case of a mismatch, we cache positive information
using the text character (as opposed to saving negative information about
the pattern character).

24



In contrast, Rohde’s framework emulates a table in a comparator func-
tion. The comparator function compares a text and a pattern index as well
as returning an entry of positive or negative information.

Use of the cache during matching

Using the cache during matching means that a comparison is only made if
the result cannot be inferred from the cache. Whether the cache is used
during matching is determined by which basic matcher we use. When the
cache is not used during matching, it is only used to determine how many
times we can shift the pattern safely.

The default matchers use the cache to potentially skip over comparisons.
To not use the cache during matching we have the matchers: Basic-Shifts
and Table-Shifts:

Basic-Shifts,Table-Shifts : orderer × pruner → match

In contrast, Rohde’s framework model not using the cache during match-
ing by pruning the same as is gathered. This Modeling works because Ro-
hde’s framework calculates the shifts before pruning the cache [21, p. 12]

The definition of the basic matcher

The Scheme code generating the main match function is displayed in Fig-
ure 3.6. Let us explain the important parts of the code.

Lines 9-10 check if the matching has finished successfully. If there are no
more indices to check against, all previous indices must have matched.

Lines 11-14 check if the text and pattern indices are valid. Valid meaning
within the range of the text and pattern strings.

Lines 20-21 determine whether to add the current text index to the trace.
This depends on whether the cache contains enough information to
determine the result of the comparison of the current text and pattern
indices without having to access the text.

Lines 23-25 is the result of a match between the pattern and text charac-
ters. The result consists of updating the cache with positive informa-
tion and continuing with the next pattern index.

Lines 26-29 is the result of a mismatch between the pattern and text char-
acters. This result stops the algorithm and updates the cache with
negative information. However, if we are emulating a bad character
shift heuristic, we instead add positive information to the cache.
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Line 30 starts the main loop. The loop is started using the traversal order
function and an empty list is added to the cache to represent a new
matching phase.

Lines 32-35 process the output. The number of shifts is calculated from
the new cache and the trace is reversed to be in the correct order.

3.1.4 Composite matchers

Composite matchers take as input two match functions and returns a new
combined match function. In this section we describe our five composite
matchers and a special match that always fails. The composite matchers of
our framework are the same as those from Rohde’s framework[21, p. 13-20].

Since composite matchers uses two matchers, they also need two caches.
In Rohde’s framework these two caches could be aligned or non-aligned,
depending on if the first element of the cache referred to the same index of
the text or not, respectively. The caches in our framework do not need this
distinction since they store which text indices refer to which elements.

The match functions given as input to composite matchers can be either
partial or complete. A partial match function do not check all pattern in-
dices, which means a partial match function cannot check if a pattern exists
in a text. A complete match function, however, do check all pattern indices
and is able to determine if a pattern exists in a text.

The trace of a composite matcher is the sequence from both match func-
tions. In the full matcher we remove duplicate accesses in the same matching
phase, from the trace.

Backtracking

The backtracking composite matcher works by using the first match function
to check if a match exists, and the second match function to potentially shift
the pattern more than a single character.

The idea of the backtracking composite matcher is presented using pseudo-
code in Figure 3.7. The full Scheme code is available in Figure 3.8. We will
not include the full Scheme code for the other composite matchers, since the
code is hard to read, and mostly the same as the code for the backtracking
composite matcher.

Using the backtracking composite matcher we can make a matcher im-
plementing the Horspool algorithm. Defining a Horspool matcher in our
framework is shown in Figure 3.9. The functions used are:

make-matcher This function converts a match function into an actual string
matcher taking a pattern and a text as input.
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match-backtracking This function check for a string using the first match
function, and uses the second match function to possible shift by more
than one.

match-basic This function is a naive string matcher that checks the last
character of the patten first. We check the last character first to ensure
the trace is correct. If we did not check the last character first, the
second match function of the backtracking matcher would access the
last text character later and its trace would be different from other
matchers.

match-table-shifts This function calculate how much we can shift the
pattern depending on the text character opposite the last pattern in-
dex.

(prune-older-than 1) This function ensures that the second match func-
tion only takes into account the latest last character, as opposed to all
characters that have previously been the last in the pattern.

Alternate

The alternate composite matcher works similarly to the backtracking matcher,
with the main difference of having the second match function start on a
shifted text index. By shifted text index we mean that, if the first match
function was run on text index k resulted in the pattern being shifted twice,
the second match function would be run on text index k + 2.

The idea of the alternate composite matcher is presented using pseudo-
code in Figure 3.10.

Using the alternate composite matcher we can make a matcher imple-
menting Sunday’s Quick Search. Defining a Quick Search matcher in our
framework is shown in Figure 3.11.

The difference between the Quick Search and the Horspool matcher is
which character is used to calculate shifts by looking up in the bad character
heuristics table; Horspool uses the character opposite the last pattern, Quick
Search uses the character after that one. In our framework, this difference
is captured by using the alternate composite matcher.

Skew

The skew composite matcher also works similarly to the backtracking matcher,
with the difference of having the second match function start on a text in-
dex, such that the last pattern character is where the first match function
found a mismatch. For example, if the first match function found a mis-
match between the pattern and the text on text index 2. The second match
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function is run on text index 2− pattern-length. This offset means the last
pattern character in the second match will be opposite text index 3.

The idea of the skew composite matcher is presented using pseudo-code
in Figure 3.12.

Using the skew composite matcher we can make a matcher implement-
ing the Boyer-Moore algorithm. Defining a Boyer-Moore matcher in our
framework is shown in Figure 3.13.

Sequential

The sequential composite matcher runs the first match function, then if that
succeeds, runs the second match function and returns the highest number
of shifts of the two match functions. The sequential composite matcher
succeeds if both of the match functions succeed. Compared to the previous
composite matchers, this matcher uses the second match function to verify
the pattern is in the text, rather than just finding a higher number of shifts.

The idea of the sequential composite matcher is presented using pseudo-
code in Figure 3.14.

Using the sequential composite matcher we can make a matcher imple-
menting the not-so-naive algorithm [6]. Defining a not-so-naive matcher in
our framework is shown in Figure 3.15.

Parallel

The parallel composite matcher runs both the first and second match func-
tions and if they both succeed, then the composite matcher succeeds. The
number of shifts is the highest of the two match functions.

The idea of the parallel composite matcher is presented using pseudo-
code in Figure 3.16.

Using the parallel composite matcher we can make a matcher imple-
menting the Smith algorithm [23]. The Smith algorithm shifts based on the
highest amount of the two bad character heuristics tables from the Horspool
and Quick Search algorithms.

Defining the Smith matcher in our framework is shown in Figure 3.17.
We use the function match-fail here. This function is a match function
that always fails, does not trace anything and shifts by one. This function
is only used to shift the pattern by one. This function is used in the Quick
Search part of the Smith matcher to move the pattern which enables Quick
Search to access the character it needs to look up in the bad character
heuristics table.

3.1.5 Summary and conclusions

This section has described how our trace-based framework composes string
matchers from string-matching concepts.
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We introduced how to define the string-matching concepts, and how to
combine different matchers to generate complex matchers.

In the following section we describe how to record the traces of string
matchers implemented in Scheme and C. To verify that our generated match-
ers implement the string-matching algorithms we claim, we need to compare
against matchers that truly implement the algorithms. This verification re-
quires comparing against these matchers, which means we need to record
their traces.
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1 (define (range-up-aux from to lst)

2 (letrec ((walk (lambda (i)

3 (if (>= i to)

4 lst

5 (cons i (walk (1+ i)))))))

6 (walk from)))

7 (define (range-up from to)

8 "Returns the list of integers [from, from+1, ..., to-1]."

9 (range-up-aux from to ’()))

10

11 (define (range-down from to)

12 "Returns the list of integers [to-1, to-2, ..., from]."

13 (letrec ((walk (lambda (i)

14 (if (< i from)

15 ’()

16 (cons i (walk (- i 1)))))))

17 (walk (- to 1))))

18

19 (define (order-left-to-right pat-length)

20 (range-up 0 pat-length))

21

22 (define (order-right-to-left pat-length)

23 (range-down 0 pat-length))

24

25 (define (order-last-left-to-right pat-length)

26 (cons (- pat-length 1)

27 (range 0 (- pat-length 1))))

28

29 (define (order-last-only pat-length)

30 (list (- pat-length 1)))

31

32 (define (order-second-only pat-length)

33 (list (if (= pat-length 1) 0 1)))

34

35 (define (order-left-to-right-skip-second pat-length)

36 (cons 0 (range-up 2 pat-length)))

37

38 (define (order-third-to-right-first pat-length)

39 (range-up-aux 2 pat-length (list 0)))

40

41 (define (order-last-first-middle-rest pat-length)

42 (case pat-length

43 ((1) (list 0))

44 ((2) (list 1 0))

45 (else

46 (let ((first 0)

47 (middle (floor (/ pat-length 2)))

48 (last (- pat-length 1)))

49 (cons last

50 (cons first

51 (cons middle

52 (range-up-aux (1+ first) middle

53 (range-up (1+ middle) last)))))))))

The definitions of the traversal order functions. Each takes as input the
length of the pattern and outputs a list of pattern indices. It is assumed
that pat-length > 0.

Figure 3.3: The traversal order implementation in our trace-based frame-
work
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Pruner What is pruned

none Nothing
all Everything
pos All positive information
neg All negative information
older-than(x) Everything older than x
pos-older-than(x) All positive information older than x
neg-older-than(x) All negative information older than x

The functions older-than, pos-older-than and neg-older-than take as input a
natural number and returns a pruner function.

Figure 3.4: The pruning functions in our trace-based frameworks

1 (define (prune-none cache)

2 cache)

3

4 (define (prune-all cache)

5 ’())

6

7 (define (prune-pos cache)

8 (cache-filter (lambda (e) (not (pos? e))) cache))

9

10 (define (prune-neg cache)

11 (cache-filter (lambda (e) (not (neg? e))) cache))

12

13 (define (prune-pos-all-but i)

14 (lambda (cache)

15 (append (list-head’ cache i)

16 (prune-pos (list-tail’ cache i)))))

17

18 (define (prune-neg-all-but i)

19 (lambda (cache)

20 (append (list-head’ cache i)

21 (prune-neg (list-tail’ cache i)))))

22

23 (define (prune-all-but i)

24 (lambda (cache)

25 (list-head’ cache i)))

The definitions of the cache pruning functions. The function list-tail’

when applied to list and k returns a sub-list of list by omitting the first k
elements. If k is greater than the length of list the empty list is returned.
The function list-head’, when applied to list and k returns a sub-list of
list containing the first k elements. If k is greater than the length of list
the whole list is returned.

Figure 3.5: The pruning implementation of our trace-based framework
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1 (define (match-basic-or-table orderer pruner is-table)

2 "match-basic-or-table orderer pruner is-table

3 orderer * pruner * boolean ->

4 (pattern * text * txt-offset * cache ->

5 match? * shifts * cache * trace * mismatch-i)"

6 (lambda (pattern text txt-offset cache)

7 (letrec ((walk (lambda (pat-indices cache trace)

8 (cond

9 ((null? pat-indices)

10 (list #t cache trace -1))

11 ((or (>= (car pat-indices) (string-length pattern))

12 (>= (+ (car pat-indices) txt-offset)

13 (string-length text)))

14 (list #f cache trace -1))

15 (else

16 (let* ((i (car pat-indices))

17 (pat-char (string-ref pattern i))

18 (j (+ txt-offset i))

19 (txt-char (string-ref text j))

20 (trace’ (if (cache-hit? cache j pat-char)

21 trace (cons j trace))))

22 (if (equal? pat-char txt-char)

23 (walk (cdr pat-indices)

24 (cache-upd-pos cache j pat-char)

25 trace’)

26 (list #f (if is-table

27 (cache-upd-pos cache j txt-char)

28 (cache-upd-neg cache j pat-char))

29 trace’ i))))))))

30 (xapply (walk (orderer (string-length pattern)) (cons ’() cache) ’())

31 (lambda (match? cache trace mismatch-i)

32 (let ((cache’ (pruner cache)))

33 (list match?

34 (cache-shifts pattern txt-offset cache’)

35 cache’ (reverse trace) mismatch-i)))))))

The definitions of the main matching function. The function (xapply fun

args) is apply with reversed arguments. The function (cache-shifts

pattern txt-offset cache) returns the number it is possible to shift a
pattern which starts at a given text index by using a given cache. The func-
tion works by checking if each pattern index would cause a mismatch based
on information in the cache. As long as there are mismatches, we can shift
the pattern one step and check each pattern index again.

Figure 3.6: Our frameworks matching phase implementation
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Input: integer txt-offset
Output: a boolean match? and an integer shifts

(match?1 , shifts1 ) = match1 (txt-offset)
if match?1 then

return (true, shifts1 )
else

(match?2 , shifts2 ) = match2 (txt-offset)
return (false,max(shifts1 , shifts2 ))

end if

Pseudo-code describing the idea behind the backtracking composite matcher.
Compared to the real implementation, this pseudo-code ignores handling
caches, traces and on which index a mismatch occurred. We have left out
this information as it is not read or modified in this composite matcher.
Description of what the variables represent:

match1 , match2 The first and last match function, respectively.

txt-offset Check if the pattern matches starting from this text index.

match?1 , match?2 Whether the pattern was in the text according to the
first and last match functions, respectively.

shifts1 , shifts2 How much it is possible to shift the pattern for the next
matching phase according to the first and second match functions,
respectively.

Figure 3.7: Backtracking composite matcher pseudo-code
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1 (define (match-backtracking match1 match2)

2 (lambda (pattern text txt-offset caches)

3 (let ((cache1 (if (pair? caches) (car caches) ’()))

4 (cache2 (if (pair? caches) (cadr caches) ’())))

5 (xapply (match1 pattern text txt-offset cache1)

6 (lambda (match?1 shifts1 cache1’ trace1 mismatch-i1)

7 (if match?1

8 (list match?1

9 shifts1

10 (list cache1’ cache2)

11 trace1

12 mismatch-i1)

13 (xapply (match2 pattern text txt-offset cache2)

14 (lambda (match?2 shifts2 cache2’ trace2 mismatch-i2)

15 (list match?1

16 (max shifts1 shifts2)

17 (list cache1’ cache2’)

18 (append trace1 trace2)

19 mismatch-i1)))))))))

This is our implementation of the backtracking composite matcher. This
is essentially the same as the simple pseudo-code from Figure 3.7 that also
shows how we handle caches, traces and on which index a mismatch oc-
curred.
The big difference compared to the idea, is that this is a curried function.
We take as input two match functions, then we return a match function to
handle matching phases.
The extra inputs are a pattern, a text and a pair of caches used by the two
match functions. The output needs a potentially updated version of the pair
of the two caches (compare Lines 10 and 17).
The extra output are the caches, the trace and which pattern index had a
character different from the text if a mismatch occurred. We only use the
trace and pattern mismatch index from the first match function, since the
second match function could be a partial matcher.

Figure 3.8: Our frameworks backtracking composite matcher
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1 (define horspool

2 (make-matcher

3 (match-backtracking

4 (match-basic order-last-left-to-right prune-all)

5 (match-table-shifts order-last-only (prune-older-than 1)))))

This is how to define a Horspool matcher using our framework. The first
match function is a complete matcher. The second match function is partial
and only accesses characters that have already been accessed by the first
match. The second match function emulates the bad character heuristics
table to potentially increase shifting.
Note that, in each matching phase, the last character is accessed in both
match functions. But we do not want to trace the same index more than
once in one matching phase. We remove all duplicates index within a single
matching phase, in the make-matcher function.

Figure 3.9: Horspool matcher defined in our framework
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Input: integer txt-offset
Output: a boolean match? and an integer shifts

(match?1 , shifts1 ) = match1 (txt-offset)
if match?1 then

return (true, shifts1 )
else

(match?2 , shifts2 ) = match2 (txt-offset + shifts1 )
if match?2 then

return (false, shifts1 )
else

return (false, shifts1 + shifts2 )
end if

end if

Pseudo-code describing the idea behind the alternate composite matcher.
Compared to the real implementation, this pseudo-code ignores handling
caches and on which index a mismatch occurred. We have left out this
information as it is not read or modified in this composite matcher
Description of what the variables represent:

match1 , match2 The first and last match function, respectively.

txt-offset Check if the pattern matches starting from this text index.

match?1 , match?2 Whether the pattern was in the text according to the
first and last match functions, respectively.

shifts1 , shifts2 How much it is possible to shift the pattern for the next
matching phase according to the first and second match functions,
respectively.

Figure 3.10: Alternate composite matcher pseudo-code

1 (define quick-search

2 (make-matcher

3 (match-alternate

4 (match-basic order-left-to-right prune-all)

5 (match-table-shifts order-last-only (prune-older-than 1)))))

This is how to define a Quick Search matcher using our framework. The first
match function is a complete matcher and the second is partial matcher.

Figure 3.11: Sunday’s Quick Search matcher defined in our framework
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Input: integer txt-offset
Output: a boolean match? , an integer shifts and an integer mismatch-i

(match?1 , shifts1 ,mismatch-i1 ) = match1 (txt-offset)
if match?1 then

return (true, shifts1 )
else

(match?2 , shifts2 ,mismatch-i2 ) =
match2 (txt-offset + mismatch-i1 + 1− pattern-length)

return (false,max(shifts1 , shifts2 +mismatch-i1 +1−pattern-length))
end if

Pseudo-code describing the idea behind the skew composite matcher. Com-
pared to the real implementation, this pseudo-code ignores handling caches
and traces. We have left out this information as it is not read or modified
in this composite matcher.
Description of what the variables represent:

match1 , match2 The first and last match function, respectively.

txt-offset Check if the pattern matches starting from this text index.

match?1 , match?2 Whether the pattern was in the text according to the
first and last match functions, respectively.

shifts1 , shifts2 How much it is possible to shift the pattern for the next
matching phase according to the first and second match functions,
respectively.

mismatch-i1 , mismatch-i2 The pattern index where a mismatch be-
tween the pattern and text was found.

pattern-length The length of the current pattern.

Figure 3.12: Skew composite matcher pseudo-code

1 (define boyer-moore

2 (make-matcher

3 (match-skew

4 (match-basic-shifts order-right-to-left (prune-older-than 1))

5 (match-table-shifts order-last-only (prune-older-than 1)))))

This is how to define a Boyer-Moore matcher using our framework. The first
match function is a complete matcher and the second is a partial matcher.

Figure 3.13: Boyer-Moore matcher defined in our framework
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Input: integer txt-offset
Output: a boolean match? and an integer shifts

(match?1 , shifts1 ) = match1 (txt-offset)
if match?1 then

(match?2 , shifts2 ) = match2 (txt-offset)
return (match?2 ,max(shifts1 , shifts2 ))

else
return (false, shifts1 )

end if

Pseudo-code describing the idea behind the sequential composite matcher.
Compared to the real implementation, this pseudo-code ignores handling
caches, traces and on which index a mismatch occurred. We have left out
this information as it is not read or modified in this composite matcher.
Description of what the variables represent:

match1 , match2 The first and last match function, respectively.

txt-offset Check if the pattern matches starting from this text index.

match?1 , match?2 Whether the pattern was in the text according to the
first and last match functions, respectively.

shifts1 , shifts2 How much it is possible to shift the pattern for the next
matching phase according to the first and second match functions,
respectively.

Figure 3.14: Sequential composite matcher pseudo-code

1 (define not-so-naive

2 (make-matcher

3 (match-sequential

4 (match-basic-shifts order-second-only (prune-older-than 1))

5 (match-basic order-third-to-right-first prune-all))))

This is how to define a not-so-naive matcher using our framework. Both
the match functions are partial, but together they check all pattern charac-
ters, which means the resulting composite matcher is complete. The whole
pattern is checked by the combination of both the first and second match
functions. The first match checks the second character and the second checks
the remaining characters.

Figure 3.15: Not-so-naive matcher defined in our framework
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Input: integer txt-offset
Output: a boolean match? and an integer shifts

(match?1 , shifts1 ) = match1 (txt-offset)
(match?2 , shifts2 ) = match2 (txt-offset)
return (match?1 ∧match?2 ,max(shifts1 , shifts2 ))

Pseudo-code describing the idea behind the parallel composite matcher.
Compared to the real implementation, this pseudo-code ignores handling
caches, traces and on which index a mismatch occurred. We have left out
this information as it is not read or modified in this composite matcher.
Description of what the variables represent:

match1 , match2 The first and last match function, respectively.

txt-offset Check if the pattern matches starting from this text index.

match?1 , match?2 Whether the pattern was in the text according to the
first and last match functions, respectively.

shifts1 , shifts2 How much it is possible to shift the pattern for the next
matching phase according to the first and second match functions,
respectively.

Figure 3.16: Parallel composite matcher pseudo-code

1 (define smith

2 (make-matcher

3 (match-backtracking

4 (match-basic order-left-to-right prune-all)

5 (match-parallel

6 (match-table-shifts order-last-only (prune-older-than 1))

7 (match-alternate

8 (match-fail)

9 (match-table-shifts order-last-only (prune-older-than 1)))))))

This is how to define a Smith matcher using our framework. The first
match function of the backtracking composite matcher is the only complete
matcher. We use the parallel composite matcher to find the highest number
of shifts of using either Horspool or Quick Search. Getting the number of
shifts of Quick Search requires the use of the alternate composite matcher
since we need the character after the current last pattern character.

Figure 3.17: Smith matcher defined in our framework
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3.2 Tracing string matchers

In this section we describe how we trace string matchers and our assumptions
regarding matchers. Our assumptions ensure that the matchers are traced
in an uniform manner, which in turn ensure that matchers implementing
the same string-matching algorithm have the same traces.

We describe how to trace string matchers by first tracing a matcher
implemented in Scheme, and which is straightforward to trace. We then
talk about tracing more complicated string matchers implemented in the
C programming language. These matchers are described together with our
assumptions: how they can be ensured and why they are needed.

It is important to not change the behavior of string matchers in the
process of adding tracing to it. We prevent changes to behavior by changing
as few things as possible, and keeping close attention to the changes we do
make.

3.2.1 String matcher in Scheme

In this section, we trace a Scheme implementation of the specialized string
matcher from Figure 2.8.

The traced string matcher and its description is available in Figure 3.18.

3.2.2 String matchers in C

The string matchers implemented in C access text characters by two means:
array lookup and using the memcmp function. We chose to trace array lookups
instead of comparisons (as we did in the Scheme matcher) because some of
the matchers store a text character in a temporary variable.

We added tracing to array lookups by replacing the lookup (e.g. y[j])
with a call to a function (trace get(y,j)). The function trace get records
that the j’th text character have been accessed and returns that character.

We added tracing to the memcmp function by similarly replacing it with
a new function. The memcmp function compares some elements of two ar-
rays. For example memcmp(x, y + j, m - 1) performs these comparisons:
x[0] = y[j], x[1] = y[j + 1], · · · , x[m− 1] = y[j +m− 1] up until a mismatch
occurs. To add tracing to this example we replace the memcmp call with
trace memcmp(x, y + j, m - 1, j). The extra fourth argument j tells
us where we start searching from in the text, we need this index to calculate
which text index is being accessed.

But tracing every text character access is not a reliable approach, due to
differences in programmers, languages and programming environments. We
try to make the trace reliable by making assumptions about the behavior,
inputs and tracing of matchers.
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Traced Scheme matcher:

1 (define (soerensen-al-JFP96-fig-11 pat txt)

2 (define trace ’())

3 (define (traced-equal? char s’)

4 (set! trace (cons s’ trace))

5 (equal? char (string-ref txt s’)))

6 (define txt-length (string-length txt))

7 (define (loop-aab ss)

8 (if (>= ss txt-length)

9 #f

10 (let ((s’ ss)

11 (ss’ (1+ ss)))

12 (if (traced-equal? #\a s’)

13 (loop-ab ss’)

14 (loop-aab ss’)))))

15 (define (loop-ab ss)

16 (if (>= ss txt-length)

17 #f

18 (let ((s’ ss)

19 (ss’ (1+ ss)))

20 (if (traced-equal? #\a s’)

21 (loop-b ss’)

22 (if (traced-equal? #\a s’)

23 (loop-ab ss’)

24 (loop-aab ss’))))))

25 (define (loop-b ss)

26 (if (>= ss txt-length)

27 #f

28 (let ((s’ ss)

29 (ss’ (1+ ss)))

30 (if (traced-equal? #\b s’)

31 #t

32 (if (traced-equal? #\a s’)

33 (loop-b ss’)

34 (if (traced-equal? #\a s’)

35 (loop-ab ss’)

36 (loop-aab ss’)))))))

37 (if (string= pat "aab")

38 (begin (loop-aab 0)

39 (reverse trace))

40 ’()))

This is a traced implementation, in Scheme, of the matcher from Figure 2.8.
To avoid changing the behavior of the matcher, we have focused on staying
as close as possible to the code in Figure 2.8. In order to have access to the
text index, we work with a string as opposed to a list of characters. We have
managed to encapsulate most of the work in the traced-equal? function.
This function compares the character given as the first argument against
the character in the string at the index given as the second argument, and
the function saves the index as part of the trace.
Also note that this is a specialized matcher that returns the empty trace
when given a pattern other than aab.

Figure 3.18: Tracing Sørensen et al.’s string matcher in Scheme
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Our assumptions are rules requiring specific behavior, inputs and tracing
of string matchers. These assumptions are needed because they ensure that
the traces of the string matchers are comparable. Our assumptions work
by ensuring string matchers have the same behavior in the parts we are
not interested in differentiating, and that tracing is recorded in an uniform
manner.

3.2.3 Matching after the first occurrence

We assume string matchers stop matching after finding the first occurrence
of the given pattern in the given text.

Without this assumptions, matchers could continue matching after the
first occurrence, which would mean more text indices would be recorded,
and the traces of the matchers would not be comparable.

We ensure this assumption by stopping the string matchers if we find
the pattern in the text.

3.2.4 Duplicate accesses in the same matching phase

We assume a text index is only accessed once per matching phase.
Recording when every text character is accessed can be too much. Some

of the string matchers access the same text character twice without need-
ing to. By “needing to” we mean we could store the text character in a
temporary variable without changing the asymptotic time or memory usage
of the matcher. These duplicate accesses often occur in matchers designed
by humans, since an array lookup does not affect the behavior or the per-
formance of the matcher, and having duplicate accesses can make the code
easier to understand. However, duplicate access rarely occur without cause
in matchers designed by automation such as specialization.

We ensure this assumption by checking for, and removing, duplicate
accesses during the execution of a block of code. We do this using the two
functions start pruning duplicates() and stop pruning duplicates().
These functions surround a block of code defining the matching phase. The
functions remove any duplicate accesses made by the code block.

This method is demonstrated in the tracing of the Raita matcher, which
is displayed in Figure 3.19 [19].

However, determining what a matching phase consist of, is not always
straightforward. An example of this is the handbooks Morris-Pratt matcher
(see Figure 3.21) and our frameworks Morris-Pratt matcher. The handbooks
Morris-Pratt matcher have an inner loop in its matching phase to determine
how much to shift, which can correctly access the same character twice. The
Morris-Pratt matcher in our framework does not have this inner loop, and
instead defines the behavior of the inner loop as separate matching phases.
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Standard Raita matcher:

1 j = 0;

2 while (j <= n - m) {

3 c = y[j + m - 1];

4 if (lastCh == c

5 && firstCh == y[j]

6 && middleCh == y[j + m/2]

7 && memcmp(secondCh, y + j + 1, m - 2) == 0)

8 OUTPUT(j);

9 j += bmBc[c];

10 }

Traced Raita matcher:

1 j = 0;

2 set_txt_length(n);

3 while (j <= n - m) {

4 start_pruning_duplicates();

5 c = y[j + m - 1];

6 if (lastCh == c

7 && firstCh == y[j]

8 && middleCh == y[j + m/2]

9 && memcmp(secondCh, y + j + 1, m - 2) == 0)

10 OUTPUT(j);

11 j += bmBc[c];

12 stop_pruning_duplicates();

13 }

x, y pattern and text as a byte arrays

m, n the lengths of the pattern and text

j text index

OUTPUT(j) Indicate the pattern was found in the text at index j

firstCh, middleCh, LastCh the first, middle and last characters of the pat-
tern

The main loop of a Raita matcher implemented in C, before and after adding
tracing. There is also an explanation of the variables and functions. We need
to prune tracing of duplicate indices, because the middle character is com-
pared twice (once against middleCh, and once in the memcmp() function).

Figure 3.19: Tracing a Raita matcher in C

Because of this assumption, we trace the Smith matcher differently in our
framework compared to Rohde’s. This difference comes from a special case
in Smith matcher: the last character can be accessed twice if we mismatch
on the comparison involving the last pattern character. This case means
that, in the trace of Rohde’s Smith matcher, there is an extra index in the
trace compared to our frameworks Smith matcher [21, p. 24].
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3.2.5 Recording out-of-bounds text indices

We assume no out-of-bounds text indices are recorded. A text index is
out-of-bounds if it does not refer to a character in the text.

This assumption ensures that string matchers made using different lan-
guages and in different environments are comparable. For example, In C,
strings are terminated with a null byte. Fetching the terminating null byte
from the text array can simplify the algorithm. The null byte, however, is
not in a valid range of the text and should therefore not be traced.

We ensure this assumption by only tracing indices in the range [0, n−1],
where n is the length of the text. To be able to discard indices greater
than the length of the text we call the function set txt length(n) which
discards records indices greater than n− 1.

This concept is demonstrated in the tracing of the not-so-naive matcher
in Figure 3.20.

3.2.6 Pattern and text lengths

We assume our matchers are not applied with patterns or texts that consist
of less than 3 characters.

This assumption is needed because some string matchers have undefined
behavior for very short patterns and texts. These matchers can refer to
specific indices (not-so-naive uses the second index) or the matchers divide
the pattern up into several parts (the Raita algorithm uses the last, first and
middle index). These matchers have undefined behavior when the pattern
is very short; not-so-naive and the Raita algorithm assumes pattern lengths
of at least 2 and 3, respectively.

We ensure this assumption by only using pattern and text inputs with
sizes of at least 3. The number 3 was chosen because that is the maximum
number of specific indices referred to in the descriptions of the algorithms
we looked at. The maximum of 3 “specific indices referred to” is from the
Raita algorithm.

To demonstrate what may happen if this assumption is not satisfied,
let us say we applied a pattern of length 1 to the not-so-naive matcher
displayed in Figure 3.20. When the second character of the pattern is read
we get a null-character because this is implemented in C. A null-character
is different from all characters in the text. The null-character causes the
if-statement in line 3 to fail, which causes the implementation to skip to
checking another text suffix. The if-statement only succeeds for the last
suffix of the text. Therefore, when the pattern has length 1, the pattern is
only checked against the last character of the text.
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Standard not-so-naive matcher:

1 j = 0;

2 while (j <= n - m) {

3 if (x[1] != trace_get(y, j + 1))

4 j += k;

5 else {

6 if (memcmp(x + 2, y + j + 2, m - 2) == 0

7 && x[0] == y[j])

8 OUTPUT(j);

9 j += ell;

10 }

11 }

Traced not-so-naive matcher:

1 j = 0;

2 set_txt_length(n);

3 while (j <= n - m) {

4 start_pruning_duplicates();

5 if (x[1] != trace_get(y, j + 1))

6 j += k;

7 else {

8 if (trace_memcmp(x + 2, y + j + 2, m - 2, j + 2) == 0

9 && x[0] == trace_get(y, j))

10 OUTPUT(j);

11 j += ell;

12 }

13 stop_pruning_duplicates();

14 }

x, y pattern and text as a byte arrays

m, n the lengths of the pattern and text

j text index

OUTPUT(j) Indicate the pattern was found in the text at index j

k, l How much to shift when the second character doesn’t and does match,
respectively

The main loop of a not-so-naive matcher implemented in C, before and after
adding tracing. There is also an explanation of the variables and functions.
We need to define a text length to prune indices out-of-bounds of the text.
If the text has a size less than 3, the memcmp will check against an index
out-of-bound.

Figure 3.20: Tracing a not-so-naive matcher in C

3.2.7 Existence of at least one match

We assume our matchers are only applied with inputs where the pattern
occurs in the text at least once.

This assumption is needed because some of our string matchers do not
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stop matching as soon as the matcher know a match is no longer possible.
Like with duplicate accesses, whether the matcher stops as soon as a match
is not possible, or the matcher access a few more characters does not affect
the asymptotic running time or memory usage of the matcher.

We ensure this assumption by only using inputs where there is always
at least one occurrence of the pattern in the text. We do this by appending
the pattern to the end of the text.

To demonstrate what may happen if this assumption is not satisfied,
let us look at the non-traced Morris-Pratt C matcher in Figure 3.21. The
variables i and j denote the next text and pattern indices to be compared. In
the second while-statement on Line 3 a mismatch can occur while comparing
against the end of the text. This mismatch sets the pattern index i without
checking if the matcher should stop. Decrementing the pattern index has
the same effect as comparing against a later text suffix. The matcher should
stop here because the current pattern suffix cannot fit in the current text
suffix.

3.2.8 Further assumptions

The assumptions we have listed are enough to ensure uniform tracing for
the string matchers we have examined. But applying our framework to
new programming environments or string-matching algorithms could require
further assumptions.

For example, we did not need an assumption about evaluation order. If
we apply a function with two text characters and each text character access
has a side-effect of recording its index, different evaluation orders will result
in different traces. Assuming the evaluation order is left-to-right would give
us uniform tracing.

3.2.9 Summary and conclusions

This section has described how we add tracing to string matchers. To avoid
the unreliable nature of traces, we have made assumptions about the behav-
ior, inputs and tracing of matchers.

We assume that string matchers stop matching after the first found oc-
currence of the pattern the text, remove duplicate access in the same match-
ing phase, do not record out-of-bounds text indices, use pattern and text
lengths of at least 3 and that there must always exists at least one occur-
rence.

Our assumptions ensure that the string matchers are similar enough
to be comparable. By making our matchers comparable, we also assume
that our string matchers do not have interesting behavior outside of our
assumptions. For example, we assume string matchers do not have specific
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Morris-Pratt matcher:

1 i = j = 0;

2 while (j < n) {

3 while (i > -1 && x[i] != y[j])

4 i = mpNext[i];

5 i++;

6 j++;

7 if (i >= m) {

8 OUTPUT(j - i);

9 i = mpNext[i];

10 }

11 }

Traced Morris-Pratt matcher:

1 i = j = 0;

2 set_txt_length(n);

3 while (j < n) {

4 while (i > -1 && x[i] != trace_get(y,j))

5 i = mpNext[i];

6 i++;

7 j++;

8 if (i >= m) {

9 OUTPUT(j - i);

10 i = mpNext[i];

11 }

12 }

x, y pattern and text as a byte arrays

m, n the lengths of the pattern and text

i, j pattern and text index

OUTPUT(j) Indicate the pattern was found in the text at index j

mpNext[i] How much to shift when the i’th pattern character does not
match a text character

The main loop of a Morris-Pratt matcher implemented in C, before and after
adding tracing. There is also an explanation of the variables and functions.
We have not added duplicates pruning here like we did in Figures 3.19 and
3.20. We do not prune duplicates here because it is part of the algorithm
that the inner while-loop can access the same index more than once.

Figure 3.21: Tracing a Morris-Pratt matcher in C

behavior defined when no match is found or when given very short inputs.
None of the algorithms we have looked at has any such behavior.

In conclusion, we have presented assumptions that ensure that the traces
are comparable for the string matchers we have examined. Different string
matchers, however, may reveal new forms of unreliability that require further
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assumptions.
In the following section we describe several methods of comparing our

generated string matchers and other matchers we have traced.

3.3 Comparing String Matchers

This section describe how we compare string matchers. We describe the
type of input we test with. We also describe our three methods of comparing
matchers: identifying a single matcher, generating a table of separate string
matchers and building an evolutionary tree.

3.3.1 Test inputs

We test with permutations of strings up to a given length and an alphabet
of a given size. The problem with checking all permutations (compared
to fewer random strings of greater lengths) is that matchers can cache a
specific amount of positive or negative information. A matcher storing a
large number of entries of negative information is hard to distinguish from
a matcher storing all negative information.

We chose our default test inputs as string permutations of lengths 3 and
4 over the alphabet a and b for the patterns and lengths 1 to 5 over the
alphabet a, b and c for the texts. The extra symbol in the texts alphabet is
to highlight the best-case scenario of a lookup in a bad character heuristics
table. We have tried lengths up to 6 for both patterns and texts without
separating our string matchers further.

3.3.2 Comparing two matchers

We compare two matchers using a set of inputs by comparing the resulting
traces from applying the matchers with each input. The matchers are not
trace equivalent if one of the inputs result in different traces. The matchers
are trace equivalent (according to the inputs) if all of the inputs result in
the same trace.

If the matchers are not trace equivalent, the input and trace that separate
the two matchers, are from the first input resulting in different traces.

3.3.3 Identifying a single string matcher

Our first method identifies a given string matcher. This method compares
the traces of the given matcher against the traces of a set of other matchers.
The method returns the set of other matchers that were trace equivalent
with the given one for all inputs.

This method of identifying string matchers takes as input a given matcher
to identify, a set of matchers to compare against, and a set of inputs. The
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method works by comparing the trace of the given matchers and the set of
other matchers when applied to each input. Any other matchers whose trace
do not match the given matchers are removed from further consideration.
The algorithm stops when all inputs have been tested or when the set of
other matchers is empty. If the set of other matchers is empty, we know the
given matcher is different from all the matchers we compared against, and
there is no need to apply more input. If all inputs have been tested, the
given matcher is equivalent with the remaining set of matchers to compare
against.

We handle identifying a given specialized matcher by ignoring the input
the given matcher is not defined on. We handle comparing against special-
ized matchers by keeping track of the matchers that have not been defined
on the same inputs as the given matcher. Using specialized matchers, how-
ever, can cause some problems. An example of this are the Morris-Pratt
and Knuth-Morris-Pratt algorithms, The pattern ab results in the same
next and failure table, and these tables are the only difference between the
MP and KMP algorithms. The equivalent next and failure table means we
cannot verify whether matchers specialized with respect to the pattern ab
are trace-equivalent with KMP or MP matchers.

An example of this approach is displayed in Figure 3.22. We can see that
from the figure that our given specialized KMP is different from a Morris-
Pratt matcher on the pattern aab and the text abaab. The Figure also tells
us that we did not share any input with the matcher Specialized-MP-aba,
that was specialized with respect to the pattern aba. The conclusion is
that our given specialized KMP is trace equivalent with a Knuth-Morris-
Pratt matcher, and a KMP matcher with two negative entries. Knuth-
Morris-Pratt matchers, however, are not trace equivalent with the KMP-
2neg matcher as seen in Figure 3.23. The reason it concludes that our given
matcher is trace equivalent with both KMP and KMP-2neg is because we
the pattern aab cannot differentiate these two.

3.3.4 Generating a table separating string matchers

The table separating string matchers contains sets of trace-equivalent string
matchers and the set of inputs and traces that separate each set from all
other matchers in the table.

An example of a table separating string matchers is displayed in Fig-
ure 3.23. This table consist of three different string matchers, with inputs
and corresponding traces that separate the three matchers.

To identify a given matcher using this table we would first apply our
matcher with the pattern aaa and the text abaa to get a corresponding
trace. If our trace is 0, 1, 1, 2, 3, 4 then our matcher is trace-equivalent with
MP (meaning with the matchers in the group containing the MP matcher
in the table), and if our trace is 0, 1, 2, 3, 4 our matcher is likely either KMP
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Comparing Specialized-KMP-aab against 4 other matchers...

Specialized-KMP-aab is different from Morris-Pratt

pattern ’aab’ and text ’abaab’

Specialized-KMP-aab trace: (0 1 2 3 4)

Morris-Pratt trace: (0 1 1 2 3 4)

No more inputs

These matchers do not share any inputs with Specialized-KMP-aab:

Specialized-MP-aba

The matcher Specialized-KMP-aab is trace equivalent with:

Knuth-Morris-Pratt

KMP-2neg

The result of trying to identifying a specialized KMP matcher against a
KMP, a MP, a specialized MP matcher, and the KMP-2neg matcher which
is a KMP matcher saving two entries of negative information.
Our inputs consisted of the pattern aab, and all texts up to a length of 5
with the alphabet a, b and c.

Figure 3.22: Output from identifying a specialized KMP string matcher

or KMP-2neg depending on another trace. The other trace we need is from
applying our matcher with the pattern abaa and the text abacabaa. Like
before, we look up this trace in the table to check if our given matcher is
likely KMP or KMP-2neg.

Specialized string matchers are not used in the generation of tables sep-
arating matchers. Specialized matchers are only defined on one pattern,
which forces us to use inputs on that pattern, and this would result in using
more inputs and traces to separate the matchers in the table.

When we have identified a given matcher using this table, we do not know
if our matcher is actually equivalent with the identified matcher. In fact,
we only know that our matcher is different from all matchers in the table
excluding the ones in the same groups as the matcher we were equivalent
with.

Comparing a set of string matchers is a much harder problem than com-
paring two. In order to generate a table separating matchers in a reasonable
time, we trim our data while applying input to the set of matchers. We use
a greedy approach to find the sets of inputs and their corresponding traces
separating the trace equivalent groups of matchers. We trim our data by
occasionally calculating a temporary table from our temporary data, and
then removing all inputs and traces not included in this temporary table.
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pattern text trace matcher

aaa abaaa 0, 1, 1, 2, 3, 4 Morris-Pratt

aaa abaaa 0, 1, 2, 3, 4 Knuth-Morris-Pratt
abaa abacabaa 0, 1, 2, 3, 3, 3, 4, 5, 6, 7

aaa abaaa 0, 1, 2, 3, 4 KMP-2neg
abaa abacabaa 0, 1, 2, 3, 3, 4, 5, 6, 7

A table separating string matchers over the three matchers: Morris-Pratt,
Knuth-Morris-Pratt and KMP-2neg which is a KMP matcher that stores
two entries of negative information (opposed to one).
The table uses inputs consisting of patterns up to a length of 4 with the
alphabet a and b, and texts up to a length of 5 with the alphabet a, b and
c.

Figure 3.23: Table separating KMP-like string matchers

Greedy method of separating groups of trace-equivalent matchers

Here we describe our greedy method of separating groups of trace-equivalent
string matchers, which results in a table separating matchers.

We have gathered inputs and traces data from our matchers. This data
is a set over the tuple consisting of a pattern and text, together with sets
of traces and the matchers that had that trace when applied to the pattern
and text. This data separates two matchers if there exists a pattern and
text that, when applied to our matchers, result in different traces.

Our greedy algorithm works like this:

1. Define all matchers as being equivalent.

2. Find the input and trace which separate the most matchers. Split the
matchers into new groups according to the found input and trace.

3. Apply Step 2 on each new group of matchers as long as there exists
an input and trace that can separate some matchers in at least one
group.

To get the final table we parse and print the output from the greedy
algorithm.

3.3.5 Building an evolutionary tree over string matchers

Evolutionary trees reveal the structure of string matchers, matchers that
share concepts are closer to each other in the tree. This section describes
how we determine similarity between matchers using two trace comparison
methods, how these similarities are used to build evolutionary trees and the
different effects our two trace comparison methods have on the built trees.
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Determining similarity between matchers

The first part of building an evolutionary tree is determining how simi-
lar matchers are. We determine similarity by comparing the traces of our
matchers when applied with a set of inputs. We compare the traces using
two methods: the naive method which decide whether traces are equiva-
lent or different, and the pairwise-alignment method which decide similarity
based on how similar the traces are. Because of the tool we use to generate
evolutionary trees, we do not compare the similarity between matchers, but
rather the difference between matchers.

We determine the difference between the traces from a single input by
applying one of our two comparison methods with each pair of matchers and
their traces, when the traces are different. The comparison methods return
a value determining how different the traces are. The sum of the values
determining difference between whenever two matchers have different traces
determines how different these two matchers are.

The naive trace comparison method

The naive trace comparison method decide whether the two traces compared
are equivalent or not. This method always returns a value of 1 since the
trace comparison methods are applied on matchers every time the matchers
give a different trace. The naive method calculates the difference between
two matchers as the number of inputs which caused the matchers to have
different traces.

The pairwise alignment trace comparison method

The pairwise-alignment trace comparison method uses the Needleman-Wunsch
algorithm [16] to determine how different two traces are. The Needleman-
Wunsch algorithm determines how best to transform one string into another
by a sequence of steps consisting of either inserting, removing or replacing
one character.

We define the best method of transforming one string into another by
assigning costs to the steps we use to transform strings. The gap cost is the
cost of inserting or removing a character into the string, and the difference
cost is the cost of replacing a character. The best method of transforming
one string into another is the sequence of steps that have the minimum
sum of costs of the steps. The sum of costs of the steps is the cost of
transforming one string into another, and it is a value determining how
different two strings are from each other.

The Needleman-Wunsch algorithm uses a dynamic approach by defining
a solution in terms of solutions to shorter inputs. The algorithm builds
a matrix with the best score for prefixes of the two strings the algorithm
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compares. The idea behind the algorithm is displayed in Figure 3.24 using
pseudo-code.

Function cost(i, j):
if Ti,j then

return Ti,j

end if
v1, v2, v3, v4⇐ undefined
if i > 0 ∧ j > 0 then

if Ai = Bj then
v1⇐ cost(i− 1, j − 1)

else
v1⇐ cost(i− 1, j − 1) + diffcost

end if
end if
if i > 0 ∧ j ≥ 0 then
v2⇐ cost(i− 1, j) + gapcost

end if
if i ≥ 0 ∧ j > 0 then

v3⇐ cost(i, j − 1) + gapcost
end if
if i = 0 ∧ j = 0 then

v4⇐ 0
end if
Ti,j ⇐ max(v1, v2, v3, v4)
return Ti,j

• The variables A and B are the strings we are comparing.

• The variables i and j are the prefixes of A and B, respectively.

• The variable T is the matrix storing the costs of all prefixes of A and
B.

• The variables diffcost and gapcost denote the difference cost and the
gap cost, respectively.

• The output of cost(i, j) is a value representing the difference between
the i’th prefix of A and the j’th prefix of B.

Figure 3.24: Pseudo-code of the Needle-Wunsch algorithm
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Building evolutionary trees

An evolutionary tree over string matchers is a tree where the leaves are
matchers. The distance between leaves determine how related the matchers
in the leaves are, the shorter the distance the more related. We build an
evolutionary tree from a distance matrix using the neighbor joining method,
which was first described by Saitou and Nei [22].

A distance matrix represents how different a set of string matchers are
from each other. A distance matrix D over n matchers is n × n and the
element Di,j has a value representing how different the i’th matcher and
the j’th matcher are from each other. An example of a distance matrix is
displayed in Figure 3.25.

Naive MP KMP KMP-2neg

Naive 0 8544 16660 16632
MP 8544 0 8116 8088
KMP 16660 8116 0 28
KMP-2neg 16632 8088 28 0

This is a distance matrix defining the differences between the naive, MP,
KMP and KMP-2neg matchers. The table was generated using the pairwise-
alignment trace comparison method with a gap cost of 2 and a difference
cost of 5.

Figure 3.25: Distance matrix example

Using the distance matrix we make an evolutionary tree using the neigh-
bor joining method. The neighbor joining method combines string matchers
in the same subtree that are related to each other and different from all
other matchers. The method is described below:

1. Define clusters for each string matcher.

2. Assign values to each cluster representing how different that cluster is
from each of the other clusters.

3. Initialize a unrooted tree with a single node having all the string
matchers as leaves.

4. Find the two clusters that are most related to each other and most
different from all other clusters.

5. Combine these two clusters and redefine the values representing dif-
ference between this new cluster and the other clusters.

6. In the tree, combine the leaves or subtrees represented by the two
clusters from Step 4. This combination creates a new node, which is
connected to the initial node in the tree.
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7. Go to Step 4 until there are only 2 clusters left.

An example of an evolutionary tree is displayed in Figure 3.26. This tree
have split the matchers into two pairs: the naive and the MP matchers, and
the KMP and KMP-2neg matchers. This split tells us that matchers in each
pair are more similar to each other than they are to the opposite pair.

This is the evolutionary tree generated using the QuickTree tool based on the
distance matrix in Figure 3.25. The tree was generated using the neighbor
joining method.

Figure 3.26: Distance matrix example

We build our evolutionary trees using the QuickTree tool. QuickTree is
a fast implementation of the neighbor joining method, and it was made by
Howe, Bateman and Durbin [13].

3.3.6 Summary and conclusions

This section has introduced our methods of comparing string matchers. We
have introduced a method of identifying a single matcher, a method showing
us groups of trace-equivalent matchers, and a method of generating evolu-
tionary trees that show us how matchers are related.

3.4 Summary and conclusions

This chapter has described our trace-based framework, how it generates
string matchers, and its different methods of comparing string matchers.
We also described how to trace string matchers, which are needed to have a
set of known matchers to compare with.

In the following chapter, we present our results from using the framework
to compare a set of string matchers. We describe what these results have
revealed about the string matchers.
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Chapter 4

Results

This chapter displays and describes our experiments on string matchers
using our trace-based framework. The chapter has four sections: the first
section describes our selection of which matchers we use in the experiments;
the second section presents a table separating our chosen matchers; the third
presents an evolutionary tree of the matchers; and the final section identifies
matchers from papers we have cited, and describe these findings.

4.1 Selecting string matchers to experiment on

This section describes which string matchers we chose to experimented on,
and why.

Our chosen string matchers is a mix of matchers consisting of:

• Implementations of algorithms from the literature defined using our
framework. These implementations have names with the prefix fw .

• Some interesting permutations of string matchers. A permutation
matcher is a matcher we composed by combining permutations of con-
cepts.

• The matchers described in the papers we have cited.

• The matchers from the handbook [6] which are trace equivalent with
the previously mentioned matchers.

The permutations of string matchers are generated using our framework
as compositions of the following string-matching concepts:

• whether to use a bad character heuristics table (tbl) or not (no-tbl);

• whether to avoid comparisons whose outcome is already known from
the cache (skip) or not (no-skip);
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• whether to check the pattern from left to right (l2r) or from right to
left (r2l);

• how many matching phases worth of positive information to save: none
(0pos), 1 (1pos), 2 (2pos), all of them (pos); and

• how many matching phases worth of negative information to save:
none (0neg), 1 (1neg), 2 (2neg), all of them (neg).

An example of a generated matcher is fw no-tbl skip l2r pos 1neg. This
matcher does not use a bad character heuristics table (no-tbl), it does skip
comparisons if the cache tells us it is safe (skip), it compares the pattern from
left to right (l2r), it saves all positive information (pos) and it saves negative
information from up to 1 matching phase ago (1neg). This permutation
matcher is trace equivalent with KMP.

Compositions of the string-matching concepts are not distinct, many of
the string matcher permutations are trace equivalent. This is demonstrated
in our table separating all of our matchers, which is displayed in Appendix A.

We have chosen string matcher permutations that are trace equivalent
with our other chosen matchers. The names of permutation matchers define
which concepts combine to make them, and in turn which concepts com-
bine to make any matchers that are trace equivalent with the permutation
matchers.

We have included the handbook matchers which are trace equivalent
with our other matchers. The handbook matchers give us confidence that
the other chosen matchers are correct.

4.2 Table separating our chosen string matchers

This section displays a table separating our chosen string matchers. We
point out and describe interesting aspects of the table.

The table is displayed in Figure 4.1. Below are descriptions of some of
the groups of trace-equivalent string matchers:

Naive The first group contains the naive matcher. We can see here that
the naive matchers of our framework and the handbook are trace
equivalent on the inputs tested. We have also included a permuta-
tion matcher to describe the concepts that compose a naive matcher.
The naive permutation matcher is called fw no-tbl skip l2r 0pos 0neg.

Morris-Pratt The Morris-Pratt group contains the Morris-Pratt string
matchers from our framework and the handbook. We also have the
permutation matcher fw no-tbl skip l2r pos 0neg in this group. Com-
pared to the naive permutation matcher, this matcher saves positive
information.
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Automaton To explain how the Automaton string-matching algorithm
works, let us look at the permutation matcher (fw tbl skip l2r pos 0neg)
in this group. This permutation matcher uses a bad character heuristic
table, which in our framework means negative information is saved as
positive information. Because we use a bad character heuristics table
we do not save any negative information in this matcher (or any other
permutation matchers using a bad character heuristics table). The
permutation matcher tells us that the Automaton string-matching al-
gorithm compares the pattern from left to right using a bad character
heuristics table.

fw no-tbl skip r2l 0pos 0neg This permutation matcher compares the
pattern from right to left, but is otherwise like the naive matcher.
The other matcher in this group is described later in Section 4.4.

Partsch-Stomp Like with the Automaton group, this group tells us that
the Partsch-Stomp string-matching algorithm compares the pattern
from right to left, uses a bad character heuristics table and does not
skip comparisons [17].

fw no-tbl skip l2r pos neg This permutation matcher compares the pat-
tern from left to right and saves all positive and negative information.
This matcher can be described as an optimal KMP matcher because
it caches all negative information compared to just one entry. In the
same group we also have fw no-tbl skip l2r pos 2neg. This matcher is
trace equivalent with the optimal KMP matcher in this table and also
up to patterns and texts of lengths 7 over bigger alphabets, despite
our initial intuition that these two matchers should be different.

The table separating all of our string matchers is displayed in Appendix A.
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pattern text trace matcher

aabb aacbaaabb 0, 1, 2, 1, 2, 2, 3, 4, 5, 6, 5, 6, 7, 8 fw no-tbl skip l2r 0pos 0neg
consel-danvy-IPL89-naive-approach
cl naive
fw naive

aabb aacbaaabb 0, 1, 2, 2, 2, 3, 4, 5, 6, 6, 7, 8 fw no-tbl skip l2r pos 0neg
soerensen-al-JFP96-fig-18-fixed
ager-al-TOPLAS06-fig-3
ager-al-TOPLAS06-fig-1
cl morris pratt
fw mp

aabb aacbaaabb 0, 1, 2, 3, 4, 3, 6, 7, 5, 6, 7, 8 cl smith
fw smith

aabb aacbaaabb 0, 1, 2, 3, 4, 5, 6, 7, 8 fw tbl skip l2r pos 0neg
cl automaton
fw automaton

aabb aacbaaabb 0, 1, 2, 4, 3, 7, 4, 5, 6, 8, 5, 6, 7, 8 cl quick search
fw quick-search

aabb aacbaaabb 1, 2, 2, 4, 5, 5, 6, 6, 7, 8, 5 cl not so naive
fw not-so-naive

aabb aacbaaabb 3, 0, 1, 2, 4, 6, 8, 5, 6, 7 cl horspool
fw horspool

aabb aacbaaabb 3, 0, 2, 4, 6, 8, 5, 7, 6 cl raita
fw raita

aabb aacbaaabb 3, 2, 4, 5, 6, 7, 6, 8, 7, 6, 5 fw no-tbl skip r2l 0pos 0neg
danvy-rohde-IPL06-sec-2

aabb aacbaaabb 3, 2, 4, 6, 8, 7, 6, 5 danvy-rohde-IPL06-sec-3
fw horspool-right-to-left

aabb aacbaaabb 3, 2, 4, 7, 6, 8, 6, 5 fw no-tbl skip r2l pos neg
amtoft-al-Jones02-right-to-left

aabb aacbaaabb 3, 2, 7, 6, 8, 5 fw tbl skip r2l pos 0neg
fw optimal-bm

aabb aacbaaabb 3, 2, 7, 6, 8, 7, 6, 5 fw tbl no-skip r2l 1pos 0neg
fw partsch-stomp

aabb aacbaaabb 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8 consel-danvy-IPL89-still-naive-approach
aaab aaacbaaab 0, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8

aabb aacbaaabb 3, 2, 6, 8, 7, 6, 5 fw original-bm
abab abcbaabab 3, 2, 6, 5, 4, 8, 7, 6, 5

aabb aacbaaabb 3, 2, 6, 8, 7, 6, 5 danvy-rohde-IPL06-sec-4
abab abcbaabab 3, 2, 7, 8, 7, 6, 5 cl boyer moore

fw boyer-moore

aabb aacbaaabb 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8 fw no-tbl skip l2r pos 1neg
aaab aaacbaaab 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 consel-danvy-IPL89-further-optimization
abaa abacaabaa 0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8 ager-al-TOPLAS06-fig-4

ager-al-2002-ASIA-PEPM02-fig-6
ager-al-2002-ASIA-PEPM02-fig-3
cl knuth morris pratt
fw kmp

aabb aacbaaabb 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8 fw no-tbl skip l2r pos neg
aaab aaacbaaab 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r pos 2neg
abaa abacaabaa 0, 1, 2, 3, 3, 4, 5, 5, 6, 7, 8 amtoft-al-Jones02-left-to-right

A table separating our chosen string matchers. In the table, groups of
matchers are surrounded by horizontal lines. The groups of matchers are
trace equivalent with each other for the inputs used to generate this table.
Furthermore, the inputs and traces for each group separate that group from
all other groups.
The table used inputs consisting of patterns up to a length of 4 with the
alphabet a and b, and texts up to a length of 5 with the alphabet a, b and
c.

Figure 4.1: Table separating our chosen string matchers
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4.3 Evolutionary tree of our chosen matchers

This section displays an evolutionary tree of our chosen string matchers. We
describe interesting aspects of the tree.

The tree is displayed in Figure 4.2. We have limited the matchers to only
include one from each of the trace-equivalent groups. Excluded matchers
would be in the same place in the tree as the included matcher from the
same trace-equivalent group as the excluded matcher. Find groups of trace-
equivalent matchers in the table separating string matchers in Figure 4.1.

The evolutionary tree of all of our string matchers is displayed in Ap-
pendix B.1. To find where the excluded matchers belong in the tree, use the
table separating all of our matchers in Appendix A.

The evolutionary tree reveals an overview over our string matchers. Let
us look at some interesting aspects of the tree:

Three main branches The matchers are separated into three main branches.
These branches are the left-to-right matchers, the right-to-left match-
ers and matchers using different traversal orders.

KMP-like area We have an area of the tree consisting of our KMP-like
matchers: the KMP, MP, naive, optimal KMP and IPL89 matchers.
This area is dividing up further by whether we cache negative infor-
mation (KMP, optimal KMP) or not (naive, MP).

consel-danvy-IPL89-still-naive-approach This matcher is not trace-equivalent
with any of our other matchers. Its position in the tree, however, tells
us it is likely related to the KMP-like matchers.

4.3.1 Different comparison methods

This section describes differences in evolutionary trees built using the naive
and the pairwise-alignment trace comparison methods.

The naive method has a strong emphasis on separating matchers with
different traversal orders. The method has this emphasis because traces will
always be different if the first index compared is different. Only when the
same traversal order is applied does this method notice different concepts
between matchers. An example of a differing concept is whether to save neg-
ative information or not. Two matchers that save and do not save negative
information will have different traces for some, but not all inputs, depending
on the pattern. The three branches in the tree in Figure 4.2 is a result of
the emphasis on traversal orders.

The majority of trees built using the pairwise-alignment comparison
method are equivalent with tress built using the naive method. We built
a tree using a high gap cost and a low difference cost which is displayed
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in Appendix B.2. The high gap cost will emphasize differences in trace
lengths because pairwise-alignment uses gaps to equalize the lengths of its
input strings. In this tree, as opposed to the naive tree, the Horspool and
Horspool-right-to-left matchers are close to each other. This closeness is be-
cause these two matchers use the same method of calculating shifts, which
results in the lengths of the traces being similar despite the different traversal
orders of the matchers.
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This is an evolutionary tree over a distinct set of our chosen string matchers.
Differences between the string matchers was found using the naive compar-
ison method.
The tree was generated by comparing the amount of inputs resulting in the
same trace. We used inputs consisting of patterns up to a length of 4 with
the alphabet a and b, and texts up to a length of 5 with the alphabet a, b
and c.

Figure 4.2: Evolutionary tree of our chosen matchers
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4.4 Identifying string matchers from the literature

This section presents our experiments on string matchers from the papers
we have cited in this thesis. These source for these matchers were copied
directly, or translated to Scheme, from the papers. The experiments were
performed using the method for identifying a single string matcher.

Copying the matchers means we can’t choose which patterns they were
specialized with respect to. Specialized matchers can only be compared
on inputs involving one pattern, which means we cannot always uniquely
identify which algorithm a specialized matcher implements.

Unless we say otherwise, the matcher was applied with pattern permuta-
tions of lengths 3 to 4 over the alphabet a, b and c, and on text permutations
of lengths up to 5 over the alphabet a, b, c and d.

The specialized matchers in this section are not included in the table
separating string matchers or the evolutionary tree. The table and tree only
use matchers defined on all inputs.

The last part of the names of specialized matchers tells us which pattern
the matchers were specialized with respect to. When comparing these spe-
cialized matchers we set the pattern to the one the matcher was specialized
with respect to, and we use text permutations up to a length of 7 and over
the alphabet of the pattern, with an extra symbol added.

When we say a given matcher is trace equivalent with, e.g., KMP. We
actually mean that the given matcher is trace equivalent with KMP on the
inputs we have tested with. The given matcher could be different from KMP
on large inputs.

The full output from using our method in identifying these matchers is
available online.1

4.4.1 Knuth, Morris and Pratt, 1977

The Knuth, Morris and Pratt [15] paper included a specialized KMP matcher.
The specialized KMP matcher is called knuth-morris-pratt-SIAM77-abcabcacab.

We found that this matcher is trace equivalent with KMP, but also with op-
timal KMP. From the table in Figure 4.1, however, we know that KMP and
optimal KMP are not trace equivalent. This inconsistency comes from not
comparing traces for enough input. We can only make inputs with the sin-
gle pattern abcabcacab. And these inputs cannot separate KMP and optimal
KMP matchers. This means that for inputs having this pattern, the three
matchers KMP, Optimal KMP and knuth-morris-pratt-SIAM77-abcabcacab
will have the same trace. The paper presents the specialized matcher knuth-
morris-pratt-SIAM77-abcabcacab as being a KMP string matcher, which
means it is not intended to be trace-equivalent with KMP Optimal.

1http://www.danamlund.dk/masters_thesis
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4.4.2 Consel and Danvy, 1989

This paper by Consel and Danvy [7] describes how to specialize a naive
string matcher into a KMP matcher. The paper contains three different
matchers: a naive matcher , a KMP matcher and a matcher in between the
other two.

The naive string matcher is called consel-danvy-IPL89-naive-approach.
We found that this matcher is trace equivalent with the naive group.

The in-between string matcher is called consel-danvy-IPL89-still-naive-
approach. We found that this matcher is trace equivalent with the special-
ized matcher soerensen-al-JFP96-fig-4-aab. That matcher, however, is trace
equivalent with KMP, which the in-between matcher is not. The reason the
in-between matcher is trace equivalent with this other matcher, is, again,
because the other matcher is defined on limited input. From these results we
cannot say which algorithm the in-between matcher implements. We also
have an in-between matcher specialized with respect to the pattern ababc.
This specialized matcher is trace-equivalent with the in-between matcher
and nothing else.

The KMP string matcher is called consel-danvy-IPL89-further-optimization.
We found that this matcher is trace equivalent with KMP and with these two
specialized matchers (again due to patterns not separating them): amtoft-
al-Jones02-fig-2-aaa and soerensen-al-JFP96-fig-4-aab. This KMP matcher
also has a version specialized with respect to the pattern abcabcacab. In
the paper, this specialized matcher was compared against the specialized
matcher from the Knuth, Morris and Pratt paper to argue that consel-
danvy-IPL89-further-optimization is a KMP matcher. Since the specialized
matcher has limited input we cannot say if it is equivalent with KMP or
Optimal KMP. But the fully-defined matcher consel-danvy-IPL89-further-
optimization is equivalent with KMP, meaning we have shown that this
matcher implements the KMP algorithm.

4.4.3 Queinnec and Geffroy, 1992

This paper by Queinnec and Geffroy [18] presents a string-matching frame-
work and includes two specialized string matchers: one checking the pattern
from left to right and one checking from right to left. We described the
string-matching framework from this paper in Section 2.3.1.

The left-to-right matcher is called queinnec-geffroy-WSA92-babar. We
found that this matcher is trace equivalent with KMP and optimal KMP,
but those two matchers are not trace equivalent with each other. As before,
this is because the pattern babar cannot separate KMP and optimal KMP
matchers. From the paper we know that no negative information is pruned,
which tells us that the specialized matcher is not intended to be equivalent
with KMP.
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The right-to-left matcher is called queinnec-geffroy-WSA92-foo. We found
that this matcher is trace equivalent with the permutation matcher fw no-
tbl skip r2l pos neg which can also be described as a right-to-left optimal
KMP matcher.

4.4.4 Sørensen et al., 1996

This paper by Sørensen, Glück and Jones [24] presents the positive super-
compiler technique and includes two specialized matchers: one specialized
using this technique and an example of a specialized KMP matcher. The
paper also includes a third binding-time separated string matcher.

The specialized KMP matcher is called soerensen-al-JFP96-fig-4-aab.
We found that this matcher is trace equivalent with both KMP and op-
timal KMP, this is, yet again, due to the pattern not separating these two
matchers.

The matcher specialized using positive supercompilation is called soerensen-
al-JFP96-fig-11-aab. We found that this matcher is trace equivalent with
MP.

The binding-time separated string matcher is called soerensen-al-JFP96-
fig-18-fixed. We found that this matcher is trace equivalent with MP.

4.4.5 Amtoft et al., 2002

This paper by Amtoft, Consel, Danvy and Malmkjær [4] presents string-
matching framework and includes four matchers: two matchers checking the
pattern from left to right and from right to left, respectively, a specialized
version of previous left to right matcher and lastly a specialized Partsch-
Stomp matcher composed using this string-matching framework. We de-
scribed the string-matching framework from this paper in Section 2.3.2.

The matcher checking the pattern from left to right is called amtoft-al-
Jones02-left-to-right. We found that this matcher is trace equivalent with
optimal KMP.

The specialized version of the left-to-right matcher is called amtoft-al-
Jones02-fig-2-aaa. We found that this matcher is trace equivalent with
KMP, optimal KMP and Automaton. The reason the Automaton matcher
is included is because the pattern consist of a single symbol, which causes a
bad character heuristics table to have the same behavior as saving negative
information.

The matcher checking the pattern from right to left is called amtoft-al-
Jones02-right-to-left. We found that this matcher is trace equivalent with
the right-to-left optimal KMP matcher.

The specialized Partsch-Stomp matcher is called amtoft-al-Jones02-fig-
3-abb. This matcher was not trace equivalent with any of our matchers.
To have the specialized matcher be trace equivalent with Partsch-Stomp,
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we modified the tracing to only access each text index once per matching
phase. This modification gave us the matcher called amtoft-al-Jones02-fig-3-
abb-prune-duplicates, which, as mentioned, is trace equivalent with Partsch-
Stomp.

4.4.6 Ager et al., 2002

This paper by Ager, Danvy and Rohde [1] proves that a specialized string
matcher is a KMP matcher. The paper includes two KMP matchers, one
with tail recursion and one without.

The matcher with tail recursion is called ager-al-2002-ASIA-PEPM02-
fig-3. We found that this matcher is trace equivalent with KMP.

The matcher without tail recursion is called ager-al-2002-ASIA-PEPM02-
fig-6. We found that this matcher is also trace equivalent with KMP.

4.4.7 Ager et al., 2006

This paper by Ager, Danvy and Rohde [2] shows how to specialize a KMP
matcher in linear time. The paper presents three matchers: a binding-time
separated MP matcher, the previous modified to ensure fast specialization
and the last matcher which further adds one entry of negative information
to make a KMP matcher.

The first matcher is called ager-al-TOPLAS06-fig-1 and is trace equiv-
alent with MP.

The second matcher is called ager-al-TOPLAS06-fig-3 and is also trace
equivalent with MP.

The third matcher is called ager-al-TOPLAS06-fig-4 and is trace equiv-
alent with KMP.

4.4.8 Danvy and Rohde, 2006

This paper by Danvy and Rohde [9] presents a binding-time separated naive
string matcher that can be specialized into a Boyer-Moore matcher. The pa-
per presents four matchers: a right-to-left naive one, the previous matcher
using a bad character shift heuristics table, a specialized version of the pre-
vious matcher and, finally, a Boyer-Moore matcher.

The right-to-left naive matcher is called danvy-rohde-IPL06-sec-2 and is
trace equivalent with the permutation matcher fw no-tbl skip r2l 0pos 0neg,
which is a right-to-left naive matcher.

The matcher using a bad character heuristics table is called danvy-rohde-
IPL06-sec-3. We found that this matcher is trace equivalent with horspool-
right-to-left. The horspool-right-to-left matcher is a Horspool matcher that
compares the pattern from right to left.

The specialized version of the bad character heuristics table matcher
is called danvy-rohde-IPL06-sec-3-aba and this matcher is trace equivalent
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with horspool-right-to-left and several other right-to-left matchers due to the
pattern not being able to separate them.

The Boyer-Moore matcher is called danvy-rohde-IPL06-sec-4 and is trace
equivalent with Boyer-Moore.

4.4.9 Summary

This section has described our results from applying our trace-based frame-
work to matchers from the literature. An overview over these results are
presented in Appendix C.

4.5 Summary and conclusions

This chapter has presented our results from comparing a set of string match-
ers using our trace-based framework. We have shown how we can investigate
and understand string matchers by comparing their traces using different
methods.

In the last chapter we conclude our dissertation and present perspectives
on our experiences from working with string matching.
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Chapter 5

Conclusion and Perspectives

5.1 Conclusion

Using our trace-based framework, we have investigated, compared and de-
constructed string-matching algorithms. We have investigated string-matching
algorithms known from the literature, compared these and many more with
each other using traces, and we have deconstructed string-matching algo-
rithms into common concepts that can be combined in different ways to
make different string-matching algorithms.

Our trace-based framework lets us investigate, understand and build
string matchers through these four contributions:

• the ability to compose string matchers by combining string-matching
concepts;

• a method to identify a string matcher by comparing it against a set of
known matchers;

• a method that combines matchers into trace-equivalent groups and
lets us identify which group a given matcher belongs in; and

• a method that reveals how string matchers are related to each other
by building evolutionary trees over them.

Obtaining the Knuth-Morris-Pratt algorithm by specializing a string
matcher was first envisioned by Futamura [11]. That families of string
matchers can also be obtained by partial evaluation was conjectured by
Danvy [8, p. 72]. Composing string matchers by combining concepts was
first implemented by Queinnec and Geffroy [18]. Using traces to compare
string matchers was first presented by Rohde [21]. Using the number of
equivalent traces over a set of inputs to indicate similarity between matchers
and generating an evolutionary tree from this data is an original contribution
of the present thesis.
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5.2 Perspectives

From working on our trace-based framework and string-matching algorithms
in general, we have seen several approaches to looking at, and designing
string matchers. Being able to compare string matchers designed using dif-
ferent methods has given us a better understanding of the general structure
of string matching.

Future work Future work on evolutionary trees over string matchers
could be designing new comparison methods to highlight specific differences
between matchers. For example, we could implement a technique that deter-
mines traces be similar if reversed parts of one trace exist in the other. This
technique could cause left-to-right and right-to-left matchers to be closer in
evolutionary trees. Such evolutionary trees could reveal new insights into
the effects of these two traversal orders on string matchers.

A new approach to understanding string matching Furthermore,
our work has revealed a new approach to understanding string matching.
The traditional approach to understanding string matching requires one to
understand individual string-matching algorithms, going through the list of
algorithms one at a time. Using this approach, new insights come in the
form of new algorithms. Each new algorithm is added to the list of string-
matching algorithms in no particular order.

During this work, however, our approach to understanding string match-
ing has focused on understanding string-matching concepts and how to
combine these concepts to obtain composite string matchers. With our
approach, new insights come in the form of different concepts or matchers
combining concepts in a novel way. These new insights can be examined
using our methods of comparing string matchers, which lets us know if the
insight is truly new and reveals how a new concept affects string matchers,
or how the new matcher is related to our previous string matchers.

Closing words All in all, we have implemented and described a trace-
based framework. We have used this framework to compare string matchers
and to build evolutionary trees over them. Comparing string matchers has
helped us identify matchers from the literature. Evolutionary trees over
matchers have given us an overview over how string matchers are related
to each other. In short, we have shown that trace-based frameworks are
powerful tools for investigating, understanding and building string-matching
algorithms.
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Appendix A

Table separating all our
string matchers

This table separates all of the string matchers we have added tracing to.
This table consist of most of the handbook matchers, the known matchers
defined in our framework, permutations of matchers generated using our
framework and matchers implemented from the literature.

pattern text trace matcher

abaa ababbabaa 0, 1, 2, 3, 0, 4, 1, 5, 2, 6, 3, 7, 4, 8, 5, 6, 7, 8 cl karp rabin
abaa ababbabaa 0, 1, 2, 3, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8 fw tbl no-skip l2r 0pos neg

fw tbl no-skip l2r 0pos 2neg
fw tbl no-skip l2r 0pos 1neg
fw tbl no-skip l2r 0pos 0neg
fw tbl skip l2r 0pos neg
fw tbl skip l2r 0pos 2neg
fw tbl skip l2r 0pos 1neg
fw tbl skip l2r 0pos 0neg
fw no-tbl no-skip l2r 0pos 0neg
fw no-tbl skip l2r 0pos 0neg
consel-danvy-IPL89-naive-approach
cl naive
fw naive

abaa ababbabaa 0, 1, 2, 3, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 5 cl galil seiferas
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r 0pos 1neg

fw no-tbl skip l2r 0pos 1neg
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r pos 0neg

fw no-tbl no-skip l2r 2pos 0neg
fw no-tbl no-skip l2r 1pos 0neg

abaa ababbabaa 0, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8 fw no-tbl skip l2r pos 0neg
fw no-tbl skip l2r 2pos 0neg
fw no-tbl skip l2r 1pos 0neg
soerensen-al-JFP96-fig-18-fixed
ager-al-TOPLAS06-fig-3
ager-al-TOPLAS06-fig-1
cl morris pratt
fw mp

abaa ababbabaa 0, 1, 2, 3, 4, 3, 6, 7, 5, 6, 7, 8 cl smith
fw smith

abaa ababbabaa 0, 1, 2, 3, 4, 3, 7, 4, 8, 5, 6, 7, 8 cl quick search
Continued on next page. . .
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Table A.1 continued
pattern text trace matcher

fw quick-search
abaa ababbabaa 0, 1, 2, 3, 4, 5, 3, 7, 8, 4, 8, 5, 6, 7, 8 cl berry ravindran
abaa ababbabaa 0, 1, 2, 3, 4, 5, 6, 7, 8 fw tbl skip l2r pos neg

fw tbl skip l2r pos 2neg
fw tbl skip l2r pos 1neg
fw tbl skip l2r pos 0neg
fw tbl skip l2r 2pos neg
fw tbl skip l2r 2pos 2neg
fw tbl skip l2r 2pos 1neg
fw tbl skip l2r 2pos 0neg
fw tbl skip l2r 1pos neg
fw tbl skip l2r 1pos 2neg
fw tbl skip l2r 1pos 1neg
fw tbl skip l2r 1pos 0neg
cl forward dawg matching
cl automaton
fw automaton

abaa ababbabaa 1, 2, 3, 3, 4, 5, 6, 7, 8, 5 cl not so naive
fw not-so-naive

abaa ababbabaa 1, 2, 3, 3, 4, 6, 7, 8, 5 cl apostolico crochemore
abaa ababbabaa 2, 1, 3, 4, 5, 4, 6, 7, 7, 6, 8, 5 cl maximal shift
abaa ababbabaa 2, 3, 4, 5, 6, 7, 8, 6, 5 cl two way
abaa ababbabaa 3, 2, 1, 5, 4, 3, 8, 7, 6 cl turbo reverse factor
abaa ababbabaa 3, 2, 3, 4, 7, 4, 5, 6, 7, 8 cl skip search
abaa ababbabaa 3, 2, 3, 4, 7, 5, 6, 7, 8 cl kmp skip search
abaa ababbabaa 3, 2, 3, 5, 4, 4, 5, 6, 5, 6, 8, 7, 6, 5 cl zhu takaoka
abaa ababbabaa 3, 3, 5, 4, 4, 6, 6, 8, 7, 6, 5 cl turbo bm
abaa ababbabaa 3, 4, 5, 4, 6, 7, 6, 8, 6, 5 fw no-tbl skip r2l 1pos 0neg
abaa ababbabaa 3, 5, 2, 3, 4, 6, 8, 5, 6, 7 cl horspool

fw horspool
abaa ababbabaa 3, 5, 2, 4, 6, 8, 5, 7 cl tuned bm
abaa ababbabaa 3, 5, 2, 4, 6, 8, 5, 7, 6 cl raita

fw raita
abaa ababbabaa 3, 5, 4, 6, 8, 7, 5 fw tbl skip r2l 1pos neg

fw tbl skip r2l 1pos 2neg
fw tbl skip r2l 1pos 1neg
fw tbl skip r2l 1pos 0neg

abaa ababbabaa 3, 5, 4, 6, 8, 7, 5, 6 cl reverse colussi
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r pos 1neg
abaa abacbabaa 0, 1, 2, 3, 2, 3, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r 2pos 1neg

fw no-tbl no-skip l2r 1pos 1neg
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw tbl no-skip l2r pos neg
abaa abacbabaa 0, 1, 2, 3, 4, 5, 6, 7, 8 fw tbl no-skip l2r pos 2neg

fw tbl no-skip l2r pos 1neg
fw tbl no-skip l2r pos 0neg
fw tbl no-skip l2r 2pos neg
fw tbl no-skip l2r 2pos 2neg
fw tbl no-skip l2r 2pos 1neg
fw tbl no-skip l2r 2pos 0neg
fw tbl no-skip l2r 1pos neg
fw tbl no-skip l2r 1pos 2neg
fw tbl no-skip l2r 1pos 1neg
fw tbl no-skip l2r 1pos 0neg

abaa ababbabaa 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r pos neg
abaa abacbabaa 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r pos 2neg

fw no-tbl skip l2r 2pos neg
fw no-tbl skip l2r 2pos 2neg
fw no-tbl skip l2r 1pos neg
fw no-tbl skip l2r 1pos 2neg

Continued on next page. . .
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Table A.1 continued
pattern text trace matcher

amtoft-al-Jones02-left-to-right
abaa ababbabaa 1, 3, 3, 5, 4, 6, 8, 7 cl galil giancarlo
abaa abcaabaa 1, 3, 2, 4, 5, 7, 6
abaa ababbabaa 1, 3, 3, 5, 4, 6, 8, 7 cl colussi
abaa abcaabaa 1, 3, 2, 4, 5, 7, 6, 4
abaa ababbabaa 3, 2, 1, 5, 4, 3, 8, 7, 6, 5, 4 cl backward oracle matching
aabb ababaaabb 3, 2, 1, 5, 4, 3, 7, 6, 5, 4, 8, 7, 6, 5, 4
abaa ababbabaa 3, 2, 1, 5, 4, 3, 8, 7, 6, 5, 4 cl reverse factor
aabb ababaaabb 3, 2, 1, 7, 6, 5, 4, 8, 7, 6, 5, 4
abaa ababbabaa 3, 4, 5, 4, 6, 7, 6, 8, 7, 6, 5 fw tbl no-skip r2l 0pos neg
abaa abcaabaa 3, 2, 4, 3, 2, 5, 6, 5, 7, 6, 5, 4 fw tbl no-skip r2l 0pos 2neg

fw tbl no-skip r2l 0pos 1neg
fw tbl no-skip r2l 0pos 0neg
fw tbl skip r2l 0pos neg
fw tbl skip r2l 0pos 2neg
fw tbl skip r2l 0pos 1neg
fw tbl skip r2l 0pos 0neg
fw no-tbl no-skip r2l 0pos 0neg
fw no-tbl skip r2l 0pos 0neg
danvy-rohde-IPL06-sec-2

abaa ababbabaa 3, 4, 5, 4, 6, 7, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l 1pos 0neg
abaa abcaabaa 3, 2, 4, 3, 2, 7, 6, 5, 4
abaa ababbabaa 3, 4, 5, 4, 6, 8, 7, 6 fw no-tbl skip r2l 2pos 0neg
abbb abcbaabbb 3, 2, 4, 5, 6, 5, 7, 5, 8, 5
abaa ababbabaa 3, 4, 5, 4, 6, 8, 7, 6 fw no-tbl skip r2l pos 0neg
abbb abcbaabbb 3, 2, 4, 5, 7, 6, 5, 8, 5
abaa ababbabaa 3, 4, 5, 4, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l 2pos 0neg
abbb abcbaabbb 3, 2, 4, 5, 6, 5, 7, 6, 5, 8, 7, 6, 5
abaa ababbabaa 3, 4, 5, 4, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l pos 0neg
abbb abcbaabbb 3, 2, 4, 5, 7, 6, 5, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6 fw no-tbl skip r2l pos 1neg
abaa abacbabaa 3, 5, 4, 6, 8, 7, 6 fw no-tbl skip r2l 2pos 1neg
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6 cl apostolico giancarlo
abaa abacbabaa 3, 7, 6, 8, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw no-tbl skip r2l 1pos 1neg
bbaa bbcaabbaa 3, 2, 4, 2, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 danvy-rohde-IPL06-sec-3
bbaa bbcaabbaa 3, 2, 4, 3, 2, 5, 7, 6, 8, 7, 6, 5 fw horspool-right-to-left
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l 0pos 1neg
bbaa bbcaabbaa 3, 2, 4, 3, 2, 6, 8, 7, 6, 5 fw no-tbl skip r2l 0pos 1neg
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw tbl no-skip r2l 1pos neg
bbaa bbcaabbaa 3, 2, 7, 6, 8, 7, 6, 5 fw tbl no-skip r2l 1pos 2neg

fw tbl no-skip r2l 1pos 1neg
fw tbl no-skip r2l 1pos 0neg
fw partsch-stomp

abaa ababbabaa 3, 5, 4, 8, 7, 6 fw no-tbl skip r2l 1pos neg
aabb aacbaaabb 3, 2, 4, 6, 8, 7, 6, 5 fw no-tbl skip r2l 1pos 2neg
abaa ababbabaa 3, 5, 4, 8, 7, 6 fw no-tbl skip r2l pos neg
aabb aacbaaabb 3, 2, 4, 7, 6, 8, 6, 5 fw no-tbl skip r2l pos 2neg

fw no-tbl skip r2l 2pos neg
fw no-tbl skip r2l 2pos 2neg
amtoft-al-Jones02-right-to-left

abaa ababbabaa 3, 5, 4, 8, 7, 6, 5 fw tbl no-skip r2l pos neg
abaa abcaabaa 3, 2, 6, 5, 7, 6, 5, 4 fw tbl no-skip r2l pos 2neg

fw tbl no-skip r2l pos 1neg
fw tbl no-skip r2l pos 0neg
fw tbl no-skip r2l 2pos neg
fw tbl no-skip r2l 2pos 2neg
fw tbl no-skip r2l 2pos 1neg

Continued on next page. . .
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Table A.1 continued
pattern text trace matcher

fw tbl no-skip r2l 2pos 0neg
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r 0pos 2neg
abaa abacbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r 0pos 2neg
abba aabbbabba 0, 1, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 8
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r 0pos neg
abaa abacbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r 0pos neg
abba aabbbabba 0, 1, 1, 2, 3, 4, 2, 3, 5, 6, 7, 8
abaa ababbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r pos neg
abaa abacbabaa 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r pos 2neg
abba aabbbabba 0, 1, 1, 2, 3, 4, 5, 6, 7, 8 fw no-tbl no-skip l2r 2pos neg

fw no-tbl no-skip l2r 2pos 2neg
fw no-tbl no-skip l2r 1pos neg
fw no-tbl no-skip l2r 1pos 2neg

abaa ababbabaa 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 consel-danvy-IPL89-still-naive-approach
abaa abacbabaa 0, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8
abab acabaabab 0, 1, 1, 2, 3, 4, 5, 5, 5, 6, 7, 8
abaa ababbabaa 0, 1, 2, 3, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r pos 1neg
abaa abacbabaa 0, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8 fw no-tbl skip l2r 2pos 1neg
abab acabaabab 0, 1, 1, 2, 3, 4, 5, 5, 6, 7, 8 fw no-tbl skip l2r 1pos 1neg

consel-danvy-IPL89-further-optimization
ager-al-TOPLAS06-fig-4
ager-al-2002-ASIA-PEPM02-fig-6
ager-al-2002-ASIA-PEPM02-fig-3
cl knuth morris pratt
fw kmp

abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l 1pos 1neg
bbaa bbcaabbaa 3, 2, 4, 3, 2, 8, 7, 6, 5
aabb aacbaaabb 3, 2, 4, 6, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l pos 1neg
bbaa bbcaabbaa 3, 2, 4, 3, 2, 8, 7, 6, 5 fw no-tbl no-skip r2l 2pos 1neg
aabb aacbaaabb 3, 2, 4, 7, 6, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 fw original-bm
bbaa bbcaabbaa 3, 2, 6, 8, 7, 6, 5
abab abcbaabab 3, 2, 6, 5, 4, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 6, 8, 7, 6, 5 danvy-rohde-IPL06-sec-4
bbaa bbcaabbaa 3, 2, 6, 8, 7, 6, 5 cl boyer moore
abab abcbaabab 3, 2, 7, 8, 7, 6, 5 fw boyer-moore
abaa ababbabaa 3, 5, 4, 8, 7, 6 fw tbl skip r2l pos neg
aabb aacbaaabb 3, 2, 7, 6, 8, 5 fw tbl skip r2l pos 2neg
aaab aabaaaaab 3, 4, 5, 6, 7, 8 fw tbl skip r2l pos 1neg

fw tbl skip r2l pos 0neg
fw optimal-bm

abaa ababbabaa 3, 5, 4, 8, 7, 6 fw tbl skip r2l 2pos neg
aabb aacbaaabb 3, 2, 7, 6, 8, 5 fw tbl skip r2l 2pos 2neg
aaab aabaaaaab 3, 4, 5, 6, 7, 8, 5 fw tbl skip r2l 2pos 1neg

fw tbl skip r2l 2pos 0neg
abaa ababbabaa 3, 5, 4, 8, 7, 6, 5 fw no-tbl no-skip r2l 0pos 2neg
abaa abcaabaa 3, 2, 4, 3, 2, 6, 5, 7, 6, 5, 4 fw no-tbl skip r2l 0pos 2neg
abba aabbbabba 3, 4, 5, 4, 3, 2, 6, 7, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 8, 7, 6, 5 fw no-tbl no-skip r2l 0pos neg
abaa abcaabaa 3, 2, 4, 3, 2, 6, 5, 7, 6, 5, 4 fw no-tbl skip r2l 0pos neg
abba aabbbabba 3, 4, 5, 4, 3, 2, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 8, 7, 6, 5 fw no-tbl no-skip r2l 1pos neg
abaa abcaabaa 3, 2, 4, 3, 2, 7, 6, 5, 4 fw no-tbl no-skip r2l 1pos 2neg
aabb aacbaaabb 3, 2, 4, 6, 8, 7, 6, 5
abaa ababbabaa 3, 5, 4, 8, 7, 6, 5 fw no-tbl no-skip r2l pos neg
abaa abcaabaa 3, 2, 4, 3, 2, 7, 6, 5, 4 fw no-tbl no-skip r2l pos 2neg
aabb aacbaaabb 3, 2, 4, 7, 6, 8, 7, 6, 5 fw no-tbl no-skip r2l 2pos neg

fw no-tbl no-skip r2l 2pos 2neg
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Appendix B

Evolutionary trees

B.1 Evolutionary tree of all our distinct string match-
ers
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B.2 Evolutionary tree with high gap and low dif-
ference cost

This evolutionary tree is built using the pairwise-alignment comparison
method. The comparison method used a gap cost of 100 and a difference
cost of 1.

v
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Appendix C

Identification of string
matchers from the literature

This table gives an overview over the results described in Section 4.4.
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Matcher Matchers equivalent with it

knuth-morris-pratt-SIAM70-abcabcacab KMP
Optimal-KMP†

consel-danvy-IPL89-naive-approach Naive

consel-danvy-IPL89-still-naive soerensen-al-JFP96-fig-4-aab*

consel-danvy-IPL89-still-naive-ababc consel-danvy-IPL89-still-naive-approach
consel-danvy-IPL89-further-optimization KMP
consel-danvy-IPL89-further-optimization-abcabcacab consel-danvy-IPL89-further-optimization

KMP
Optimal KMP*

queinnec-geffroy-WSA92-babar KMP†

Optimal KMP
queinnec-geffroy-WSA92-foo Optimal-KMP-right-to-left
sorensen-al-JFP96-fig-4-aab KMP

Optimal KMP†

sorensen-al-JFP96-fig-11-aab Morris-Pratt
sorensen-al-JFP96-fig-18-fixed Morris-Pratt
amtoft-al-Jones02-left-to-right Optimal KMP
amtoft-al-Jones02-fig-2-aaa amtoft-al-Jones02-left-to-right

KMP*

Optimal KMP
Automaton*

amtoft-al-Jones02-right-to-left Optimal-KMP-right-to-left
amtoft-al-Jones02-fig-3-abb
amtoft-al-Jones02-fig-3-abb-prune-duplicates Partsch-Stomp
ager-al-2002-ASIA-PEPM02-fig-3 KMP
ager-al-2002-ASIA-PEPM02-fig-6 KMP
ager-al-TOPLAS06-fig-1 Morris-Pratt
ager-al-TOPLAS06-fig-3 Morris-Pratt
ager-al-TOPLAS06-fig-4 KMP
danvy-rohde-IPL06-sec-2 Naive-right-to-left
danvy-rohde-IPL06-sec-3 horspool-right-to-left
danvy-rohde-IPL06-sec-3-aba danvy-rohde-IPL06-sec-3

horspool-right-to-left
Boyer-Moore*

Partsch-Stomp*

Original-BM*

danvy-rohde-IPL06-sec-4 Boyer-Moore

* We know from other results in the table that these matchers were not
intended to be trace equivalent with their left-column counter-part.

† We know from the papers that these matchers were not intended to be
trace equivalent with their left-column counter-part.

Figure C.1: Summary over matchers from the literature
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Ager, 5, 14, 15, 64, 65
Age of information, 24
Alternate composite matcher, 27
Amtoft, 4, 17–19, 64
Automaton algorithm, 58, 64

Backtracking composite matcher, 26,
27

Bad character shift heuristic, 9, 10,
14, 18, 22, 24

Basic-shifts function, 25
Bateman, 6
Binding-time separated matcher, 13,

18, 65
BM, see Boyer-Moore
BM-like algorithms, 17, 18
Boyer, 3
Boyer-Moore algorithm, 3, 10, 14, 16,

18, 28, 65

Cache, 17–19, 21–23, 25
Charras, 6
Chosen string matchers, 56
Composite matcher, 26
Consel, 4, 13, 17, 62, 64
Counter-example driven, 5
C programming language, 40

Danvy, 4, 5, 13–15, 17, 62, 64, 65
Distance matrix, 53
Duplicate access, 42
Durdin, 6

Evolutionary tree, 6, 51, 52, 59

Failure table, 14
Flat cache, 22

Folding, 15
Futamura, 4, 15

Geffroy, 17, 63
Generalized partial evaluation, 4, 15
Generated string matcher, 5, 56
Glück, 4, 15, 63
Good-suffix table, 12, 14

Handbook of Exact String Matching Al-
gorithms, 6, 42, 56

Horspool algorithm, 19, 27, 28, 65
Horspool matcher, 26
Howe, 6

Identify single matchers, 6, 48, 62

Jones, 4, 15, 63

Kleene star, 17
KMP, see Knuth-Morris-Pratt
KMP-2neg, 49
KMP-like algorithms, 4, 15, 17, 18,

60
KMP test, 4, 13
Known string matcher, 5, 16
Knuth, 3, 62
Knuth-Morris-Pratt algorithm, 3, 5,

8, 13, 15, 16, 18, 49, 50, 62–
65

Lecroq, 6
Left-to-right, 7, 16, 19

Malmkjær, 17, 64
Matcher, see String matcher
Matching phase, 21
Match function, 21
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Moore, 3
Morris, 3, 62
Morris-Pratt algorithm, 8, 15, 18, 42,

46, 49, 50, 64, 65

Naive algorithm, 3, 5, 7, 18, 62
Needleman-Wunsch algorithm, 52
Negative driving, 15
Negative information, 8, 10, 17–19,

22–24
Nei, 6, 52
Neighbor joining, 6, 52
Next table, 9
Not-so-naive algorithm, 28, 44

Optimal KMP algorithm, 63, 64
Orderer, 23
Out-of-bounds text index, 44

Pairwise-alignment, 51, 52, 60
Parallel composite matcher, 28
Partsch-Stomp algorithm, 58, 64
Permutations of strings, 48
Polyvariant partial evaluation, 4, 15
Positive driving, 15
Positive information, 8, 10, 17–19, 22–

24
Positive supercompiler, 4, 15, 63
Pratt, 3, 62
Pruner, 23
Pruning, 18, 24

Queinnec, 4, 17, 63
QuickTree, 6
Quick search algorithm, 9, 27, 28

Raita algorithm, 42, 44
Regular expressions, 17
Right-to-left, 3, 14, 16, 18
Rohde, 4, 5, 14, 15, 17–19, 21, 23–26,

43, 64, 65

S-expressions, 17
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