
Applying a trace-based framework

to the Zhu-Takaoka string matcher

Masters exam in computer science
Aarhus University
7. November 2011

Student: Dan Amlund Thomsen – 20040943
Supervisor: Olivier Danvy

External examiner: Peter Sestoft

2 / 37

Keywords

● String matchers

● Trace-based framework

3 / 37

Consider a string matcher, eg, from the handbook

chapter, that you haven't considered in your

thesis, and give it the treatment of your thesis, the

way someone else would do if (s)he had read

your thesis and wanted to apply its results.

What conclusions can be drawn from the

treatment?

The question

4 / 37

Key phrases of the question

● Haven't considered in your thesis
● General framework
● Extendable

● Treatment of your thesis
● How to apply the framework

● Conclusions from the treatment
● New data point
● Confirm the thesis' conclusions

5 / 37

The answer

● Zhu-Takaoka's string-matching algorithm
● String-matching algorithm

● Add Zhu-Takaoka to the framework
● Trace

● Identify Zhu-Takaoka's string-matching concepts
● String-matching concepts

● Build binding-time separated Zhu-Takaoka matcher
● Partial evaluation
● KMP Test

● Compare string-matching algorithms
● Evolutionary tree over matchers

6 / 37

My thesis

My thesis is that trace-based frameworks make it

possible to compare string matchers, and that this

comparison reveals new methods of investigating,

understanding and building string-matching algorithms.

● Reveal the concepts of Zhu-Takaoka

● Design Zhu-Takaoka matchers

● Compare Zhu-Takaoka with other

string-matching algorithms

7 / 37

Background of my thesis (1/2)
● Motivation: Compare string matchers
● Verify the KMP test
● Ager, Danvy, Rohde 02 used a formal proof
● Not practical
● Rohde automated the negative proof
● Compare traces on a set of inputs

8 / 37

Background of my thesis (2/2)
● Measuring the Propagation of

Information in Partial Evaluation
Henning Rohde 2005

● Compare string matchers
● Compose concepts into string matchers
● Examine the literature

● My work
● Released framework as an easy-to-use tool
● Comparison methods

– Evolutionary tree
● Overview over string matchers

9 / 37

Plan

● Zhu-Takaoka's string-matching algorithm
● Add Zhu-Takaoka to the framework
● Identify Zhu-Takaoka's string-matching concepts
● Build a binding-time separated

Zhu-Takaoka matcher
● Compare Zhu-Takaoka with other algorithms
● Conclusion

10 / 37

String-matching algorithms

● String-matching algorithms find the first
occurrence of a string (the pattern) in another
string (the text)

● String matchers are implementations of
string-matching algorithms

● Naive algorithm
● Left to right
● Checks everything
● O(n²)

txt abbaba
pat aba
 ==!
 aba
 !
 aba
 !
 aba
 ===

11 / 37

Boyer-Moore and Zhu-Takaoka

● Boyer-Moore
● Right to left
● Average sub-linear
● Good-suffix
● Bad character shift heuristic

● Zhu-Takaoka
● Two-characters wide

bad character shift heuristics

txt abbaba
pat aba
 !
 aba
 !==
 aba
 ===

txt abbaba
pat aba
 !!
 aba
 ===

12 / 37

Plan

● Zhu-Takaoka's string-matching algorithm ✓
● Add Zhu-Takaoka to the framework
● Identify Zhu-Takaoka's string-matching concepts
● Build a binding-time separated

Zhu-Takaoka matcher
● Compare Zhu-Takaoka with other algorithms
● Conclusion

13 / 37

Add Zhu-Takaoka to the framework

● Motivation: Something to compare with
● Trace
● Tracing a Zhu-Takaoka matcher

14 / 37

Trace
● A trace is the sequence of text indices

compared when a matcher searches for a
pattern in a text

● Matchers are trace-equivalent if they have the
same trace on all patterns and texts

idx 012345
txt abbaba
pat aba
 !
 aba
 !==
 aba
 ===

Boyer-Moore example.

Trace: 2, 3, 2, 1, 5, 4, 3

15 / 37

Tracing string matchers

● Not trivial
● Traces need to be comparable
● Assumptions ensure different implementations

use uniform tracing
● Stop after first occurrence
● Must be at least one occurrence
● Pattern lengths at least 2
● No duplicate indices in the same matching phase

16 / 37

Zhu-Takaoka C matcher

 j = 0;
 while (j <= n - m) {
 i = m - 1;
 while (i < m && x[i] == y[i + j])
 --i;
 if (i < 0) {
 OUTPUT(j);
 } else
 j += MAX(bmGs[i],
 ztBc[y[j + m – 2]]
 [y[j + m - 1]]);
 }

17 / 37

Traced Zhu-Takaoka C matcher

 j = 0;
 while (j <= n - m) {
 start_pruning_duplicates();
 i = m - 1;
 while (i < m && i >= 0 &&
 x[i] == trace_get(y, i + j))
 --i;
 if (i < 0) {
 OUTPUT(j);
 } else
 j += MAX(bmGs[i],
 ztBc[trace_get(y, j + m – 2)]
 [trace_get(y, j + m - 1)]);
 stop_pruning_duplicates();

18 / 37

Plan

● Zhu-Takaoka's string-matching algorithm ✓
● Add Zhu-Takaoka to the framework ✓
● Identify Zhu-Takaoka's string-matching concepts
● Build a binding-time separated

Zhu-Takaoka matcher
● Compare Zhu-Takaoka with other algorithms
● Conclusion

19 / 37

Identify Zhu-Takaoka's concepts
● Motivation: Understand Zhu-Takaoka
● String-matching concepts
● Expand the framework
● Composing concepts to build a Zhu-Takaoka

matcher
● Comparing the composed Zhu-Takaoka and

Boyer-Moore matchers

20 / 37

String-matching concepts

● Traversal order
● Left to right
● Right to left

● Positive/negative information
● Boyer-Moore's good-suffix

● Bad character shift heuristics
● Two characters

txt abbaba
pat aba
 ==!
 aba
 !
 aba
 !
 aba
 ===

Naive algorithm

txt abbaba
pat aba
 !!
 aba
 ===

Zhu-Takaoka

21 / 37

Expand the framework

● Two-character bad character shift heuristics
● Ability to match all indices despite mismatches

(define (match-general orderer pruner is-table stop-on-mismatch)
 ...
 (if stop-on-mismatch
 (list #f cache' trace' i)
 (walk (cdr pat-indices) cache'
 trace'))
 ...)

(define (match-table-full orderer pruner)
 (match-general orderer pruner #t #f))

(define (match-table-full-shifts orderer pruner)
 (match-shifts (match-table-full orderer pruner) pruner))

22 / 37

Composing Zhu-Takaoka

● Guess concepts from description and
implementation

● Use framework to compare with correct
Zhu-Takaoka matcher
● Verify correctness
● Get counter-example

fw_zhu_takaoka is different from fw_boyer-moore
 pattern 'aaa' and text 'aabaaa'
 cl_zhu_takaoka trace: (2 1 5 4 3)
 fw_boyer-moore trace: (2 5 4 3)

23 / 37

Composed Zhu-Takaoka

(define zhu-takaoka
 (make-matcher
 (match-backtracking
 (match-basic-shifts order-right-to-left
 (prune-older-than 1))
 (match-table-full-shifts order-last-two
 (prune-older-than 1)))))

(define boyer-moore
 (make-matcher
 (match-skew
 (match-basic-shifts order-right-to-left
 (prune-older-than 1))
 (match-table-shifts order-last-only
 (prune-older-than 1)))))

24 / 37

Plan

● Zhu-Takaoka's string-matching algorithm ✓
● Add Zhu-Takaoka to the framework ✓
● Identify Zhu-Takaoka's string-matching concepts ✓
● Build a binding-time separated

Zhu-Takaoka matcher
● Compare Zhu-Takaoka with other algorithms
● Conclusion

25 / 37

Build a binding-time separated matcher

● Motivation: Apply framework to literature
● Partial evaluation
● KMP Test
● Building a binding-time separated Zhu-Takaoka

matcher

26 / 37

Partial Evaluation

● Specialize a program with respect to part of its
input in order to improve running time

● KMP Test: Specialize a slow naive matcher
into a fast known matcher

● Binding-time separated matcher

27 / 37

Binding-time separated Zhu-
Takaoka matcher

● Modified Danvy & Rohde's IPL06 binding-time
separated Boyer-Moore matcher

 (define (compute-offset p t j k)
 (+ (- pl j 1)
 (max (rematch-gs p j (sub1 pl) (- pl 2))
 (let ((last-txt-pat-index (+ pl (- j) k (- 1))))
 (shift p (txt-ref (- last-txt-pat-index 1))
 (txt-ref last-txt-pat-index))))))
 (define (shift p c1 c2)
 (if (equal? c2 (string-ref p 0))
 (min (- pl 1) (rematch p 1 c1 c2))
 (rematch p 1 c1 c2)))
 (define (rematch p i c1 c2)
 (if (= i pl)
 i
 (if (and (equal? c1 (string-ref p (- pl i 1)))
 (equal? c2 (string-ref p (- pl i))))
 (- i 1)
 (rematch p (1+ i) c1 c2))))

28 / 37

Plan

● Zhu-Takaoka's string-matching algorithm ✓
● Add Zhu-Takaoka to the framework ✓
● Identify Zhu-Takaoka's string-matching concepts ✓
● Build a binding-time separated

Zhu-Takaoka matcher ✓
● Compare Zhu-Takaoka with other algorithms
● Conclusion

29 / 37

Compare Zhu-Takaoka with other algorithms

● Motivation: Finding Zhu-Takaoka's place
in the world of string-matching algorithms

● Comparing concepts
● Tree over algorithms grouped by concepts

● Comparing behavior
● Similarity of matchers
● Evolutionary tree over matchers

30 / 37

Tree over string-matching concepts

31 / 37

Similarity of matchers

● Similarity of traces over a set of inputs
● Naive: number of equal traces
● Pairwise-alignment: similarity of traces

● How many insertions and changes of characters
are needed to convert one trace into another

● Evolutionary tree
● Matchers are similar the closer they are in the tree

32 / 37

Naive evolutionary tree

33 / 37

Pairwise-alignment Evolutionary tree

Replace character cost: 5
Insert character cost: 2

34 / 37

Plan

● Zhu-Takaoka's string-matching algorithm ✓
● Add Zhu-Takaoka to the framework ✓
● Identify Zhu-Takaoka's string-matching concepts ✓
● Build a binding-time separated

Zhu-Takaoka matcher ✓
● Compare Zhu-Takaoka with other algorithms ✓
● Conclusion

35 / 37

Conclusion (1/3)
● Question: Conclusions from applying the framework

to Zhu-Takaoka's algorithm?
● We have

● Traced a Zhu-Takaoka matcher
● Identified concepts of Zhu-Takaoka's algorithm
● Built a binding-time separated Zhu-Takaoka matcher
● Compared Zhu-Takaoka with other algorithms

● Conclusion
● The trace-based framework helped me to

– Investigate
– Understand
– Build

36 / 37

Conclusion (2/3)

● Henning Rohde's framework
● Goal: Help development of partial evaluators
● Contribution: Fast comparison of string matchers

● My framework
● Goal: Release the framework as an easy-to-use tool
● Contribution: Overview over string matchers

● Answer to the question
● Demonstrates usage of the framework

37 / 37

Conclusion (3/3)

● Focusing on string-matching concepts
● Combining concepts in novel ways
● Inventing new concepts
● Understand ideas; not individual algorithms

Thank You

This work have revealed a new approach to

understanding string-matching algorithms.

This new approach involves:

